ترغب بنشر مسار تعليمي؟ اضغط هنا

RDCNet: Instance segmentation with a minimalist recurrent residual network

89   0   0.0 ( 0 )
 نشر من قبل Raphael Ortiz
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Instance segmentation is a key step for quantitative microscopy. While several machine learning based methods have been proposed for this problem, most of them rely on computationally complex models that are trained on surrogate tasks. Building on recent developments towards end-to-end trainable instance segmentation, we propose a minimalist recurrent network called recurrent dilated convolutional network (RDCNet), consisting of a shared stacked dilated convolution (sSDC) layer that iteratively refines its output and thereby generates interpretable intermediate predictions. It is light-weight and has few critical hyperparameters, which can be related to physical aspects such as object size or density.We perform a sensitivity analysis of its main parameters and we demonstrate its versatility on 3 tasks with different imaging modalities: nuclear segmentation of H&E slides, of 3D anisotropic stacks from light-sheet fluorescence microscopy and leaf segmentation of top-view images of plants. It achieves state-of-the-art on 2 of the 3 datasets.



قيم البحث

اقرأ أيضاً

Low level features like edges and textures play an important role in accurately localizing instances in neural networks. In this paper, we propose an architecture which improves feature pyramid networks commonly used instance segmentation networks by incorporating low level features in all layers of the pyramid in an optimal and efficient way. Specifically, we introduce a new layer which learns new correlations from feature maps of multiple feature pyramid levels holistically and enhances the semantic information of the feature pyramid to improve accuracy. Our architecture is simple to implement in instance segmentation or object detection frameworks to boost accuracy. Using this method in Mask RCNN, our model achieves consistent improvement in precision on COCO Dataset with the computational overhead compared to the original feature pyramid network.
We propose a structured prediction architecture, which exploits the local generic features extracted by Convolutional Neural Networks and the capacity of Recurrent Neural Networks (RNN) to retrieve distant dependencies. The proposed architecture, cal led ReSeg, is based on the recently introduced ReNet model for image classification. We modify and extend it to perform the more challenging task of semantic segmentation. Each ReNet layer is composed of four RNN that sweep the image horizontally and vertically in both directions, encoding patches or activations, and providing relevant global information. Moreover, ReNet layers are stacked on top of pre-trained convolutional layers, benefiting from generic local features. Upsampling layers follow ReNet layers to recover the original image resolution in the final predictions. The proposed ReSeg architecture is efficient, flexible and suitable for a variety of semantic segmentation tasks. We evaluate ReSeg on several widely-used semantic segmentation datasets: Weizmann Horse, Oxford Flower, and CamVid; achieving state-of-the-art performance. Results show that ReSeg can act as a suitable architecture for semantic segmentation tasks, and may have further applications in other structured prediction problems. The source code and model hyperparameters are available on https://github.com/fvisin/reseg.
152 - Yu-Huan Wu , Yun Liu , Le Zhang 2020
Much of the recent efforts on salient object detection (SOD) have been devoted to producing accurate saliency maps without being aware of their instance labels. To this end, we propose a new pipeline for end-to-end salient instance segmentation (SIS) that predicts a class-agnostic mask for each detected salient instance. To better use the rich feature hierarchies in deep networks and enhance the side predictions, we propose the regularized dense connections, which attentively promote informative features and suppress non-informative ones from all feature pyramids. A novel multi-level RoIAlign based decoder is introduced to adaptively aggregate multi-level features for better mask predictions. Such strategies can be well-encapsulated into the Mask R-CNN pipeline. Extensive experiments on popular benchmarks demonstrate that our design significantly outperforms existing sArt competitors by 6.3% (58.6% vs. 52.3%) in terms of the AP metric.The code is available at https://github.com/yuhuan-wu/RDPNet.
Boundary-based instance segmentation has drawn much attention since of its attractive efficiency. However, existing methods suffer from the difficulty in long-distance regression. In this paper, we propose a coarse-to-fine module to address the probl em. Approximate boundary points are generated at the coarse stage and then features of these points are sampled and fed to a refined regressor for fine prediction. It is end-to-end trainable since differential sampling operation is well supported in the module. Furthermore, we design a holistic boundary-aware branch and introduce instance-agnostic supervision to assist regression. Equipped with ResNet-101, our approach achieves 31.7% mask AP on COCO dataset with single-scale training and testing, outperforming the baseline 1.3% mask AP with less than 1% additional parameters and GFLOPs. Experiments also show that our proposed method achieves competitive performance compared to existing boundary-based methods with a lightweight design and a simple pipeline.
Weakly-supervised instance segmentation, which could greatly save labor and time cost of pixel mask annotation, has attracted increasing attention in recent years. The commonly used pipeline firstly utilizes conventional image segmentation methods to automatically generate initial masks and then use them to train an off-the-shelf segmentation network in an iterative way. However, the initial generated masks usually contains a notable proportion of invalid masks which are mainly caused by small object instances. Directly using these initial masks to train segmentation model is harmful for the performance. To address this problem, we propose a hybrid network in this paper. In our architecture, there is a principle segmentation network which is used to handle the normal samples with valid generated masks. In addition, a complementary branch is added to handle the small and dim objects without valid masks. Experimental results indicate that our method can achieve significantly performance improvement both on the small object instances and large ones, and outperforms all state-of-the-art methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا