ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy-flux vector in anisotropic turbulence: application to rotating turbulence

371   0   0.0 ( 0 )
 نشر من قبل Naoto Yokoyama
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Energy flux plays a key role in the analyses of energy-cascading turbulence. In isotropic turbulence, the flux is given by a scalar as a function of the magnitude of the wavenumber. On the other hand, the flux in anisotropic turbulence should be a geometric vector that has a direction as well as the magnitude, and depends not only on the magnitude of the wavenumber but also on its direction. The energy-flux vector in the anisotropic turbulence cannot be uniquely determined in a way used for the isotropic flux. In this work, introducing two ansatzes, net locality and efficiency of the nonlinear energy transfer, we propose a way to determine the energy-flux vector in anisotropic turbulence by using the Moore--Penrose inverse. The energy-flux vector in strongly rotating turbulence is demonstrated based on the energy transfer rate obtained by direct numerical simulations. It is found that the direction of the energy-flux vector is consistent with the prediction of the weak turbulence theory in the wavenumber range dominated by the inertial waves. However, the energy flux along the critical wavenumbers predicted by the critical balance in the buffer range between in the weak turbulence range and the isotropic Kolmogorov turbulence range is not observed in the present simulations. This discrepancy between the critical balance and the present numerical results is discussed and the dissipation is found to play an important role in the energy flux in the buffer range.



قيم البحث

اقرأ أيضاً

Stratified turbulence shows scale- and direction-dependent anisotropy and the coexistence of weak turbulence of internal gravity waves and strong turbulence of eddies. Straightforward application of standard analyses developed in isotropic turbulence sometimes masks important aspects of the anisotropic turbulence. To capture detailed structures of the energy distribution in the wave-number space, it is indispensable to examine the energy distribution with non-integrated spectra by fixing the codimensional wave-number component or in the two-dimensional domain spanned by both the horizontal and vertical wave numbers. Indices which separate the range of the anisotropic weak-wave turbulence in the wave-number space are proposed based on the decomposed energies. In addition, the dominance of the waves in the range is also verified by the small frequency deviation from the linear dispersion relation. In the wave-dominant range, the linear wave periods given by the linear dispersion relation are smaller than approximately one third of the eddy-turnover time. The linear wave periods reflect the anisotropy of the system, while the isotropic Brunt-Vaisala period is used to evaluate the Ozmidov wave number, which is necessarily isotropic. It is found that the time scales in consideration of the anisotropy of the flow field must be appropriately selected to obtain the critical wave number separating the weak-wave turbulence.
In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both of the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produces cascading net energy transfer to large wave numbers. Because the systems nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.
177 - Wouter Bos 2010
Two-dimensional statistically stationary isotropic turbulence with an imposed uniform scalar gradient is investigated. Dimensional arguments are presented to predict the inertial range scaling of the turbulent scalar flux spectrum in both the inverse cascade range and the enstrophy cascade range for small and unity Schmidt numbers. The scaling predictions are checked by direct numerical simulations and good agreement is observed.
Following the idea that dissipation in turbulence at high Reynolds number is by events singular in space-time and described by solutions of the inviscid Euler equations, we draw the conclusion that in such flows scaling laws should depend only on qua ntities appearing in the Euler equations. This excludes viscosity or a turbulent length as scaling parameters and constrains drastically possible analytical pictures of this limit. We focus on the law of drag by Newton for a projectile moving quickly in a fluid at rest. Inspired by the Newtons drag force law (proportional to the square of the speed of the moving object in the limit of large Reynolds numbers), which is well verified in experiments when the location of the detachment of the boundary layer is defined, we propose an explicit relationship between Reynoldss stress in the turbulent wake and quantities depending on the velocity field (averaged in time but depending on space), in the form of an integro-differential equation for the velocity which is solved for a Poiseuille flow in a circular pipe.
80 - V.E. Zakharov 2005
We report results of sumulation of wave turbulence. Both inverse and direct cascades are observed. The definition of mesoscopic turbulence is given. This is a regime when the number of modes in a system involved in turbulence is high enough to qualit atively simulate most of the processes but significantly smaller then the threshold which gives us quantitative agreement with the statistical description, such as kinetic equation. Such a regime takes place in numerical simulation, in essentially finite systems, etc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا