ﻻ يوجد ملخص باللغة العربية
Energy flux plays a key role in the analyses of energy-cascading turbulence. In isotropic turbulence, the flux is given by a scalar as a function of the magnitude of the wavenumber. On the other hand, the flux in anisotropic turbulence should be a geometric vector that has a direction as well as the magnitude, and depends not only on the magnitude of the wavenumber but also on its direction. The energy-flux vector in the anisotropic turbulence cannot be uniquely determined in a way used for the isotropic flux. In this work, introducing two ansatzes, net locality and efficiency of the nonlinear energy transfer, we propose a way to determine the energy-flux vector in anisotropic turbulence by using the Moore--Penrose inverse. The energy-flux vector in strongly rotating turbulence is demonstrated based on the energy transfer rate obtained by direct numerical simulations. It is found that the direction of the energy-flux vector is consistent with the prediction of the weak turbulence theory in the wavenumber range dominated by the inertial waves. However, the energy flux along the critical wavenumbers predicted by the critical balance in the buffer range between in the weak turbulence range and the isotropic Kolmogorov turbulence range is not observed in the present simulations. This discrepancy between the critical balance and the present numerical results is discussed and the dissipation is found to play an important role in the energy flux in the buffer range.
Stratified turbulence shows scale- and direction-dependent anisotropy and the coexistence of weak turbulence of internal gravity waves and strong turbulence of eddies. Straightforward application of standard analyses developed in isotropic turbulence
In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both of the Fourier space and
Two-dimensional statistically stationary isotropic turbulence with an imposed uniform scalar gradient is investigated. Dimensional arguments are presented to predict the inertial range scaling of the turbulent scalar flux spectrum in both the inverse
Following the idea that dissipation in turbulence at high Reynolds number is by events singular in space-time and described by solutions of the inviscid Euler equations, we draw the conclusion that in such flows scaling laws should depend only on qua
We report results of sumulation of wave turbulence. Both inverse and direct cascades are observed. The definition of mesoscopic turbulence is given. This is a regime when the number of modes in a system involved in turbulence is high enough to qualit