ﻻ يوجد ملخص باللغة العربية
We introduce and study a general version of the fractional online knapsack problem with multiple knapsacks, heterogeneous constraints on which items can be assigned to which knapsack, and rate-limiting constraints on the assignment of items to knapsacks. This problem generalizes variations of the knapsack problem and of the one-way trading problem that have previously been treated separately, and additionally finds application to the real-time control of electric vehicle (EV) charging. We introduce a new algorithm that achieves a competitive ratio within an additive factor of one of the best achievable competitive ratios for the general problem and matches or improves upon the best-known competitive ratio for special cases in the knapsack and one-way trading literatures. Moreover, our analysis provides a novel approach to online algorithm design based on an instance-dependent primal-dual analysis that connects the identification of worst-case instances to the design of algorithms. Finally, we illustrate the proposed algorithm via trace-based experiments of EV charging.
The design of online algorithms has tended to focus on algorithms with worst-case guarantees, e.g., bounds on the competitive ratio. However, it is well-known that such algorithms are often overly pessimistic, performing sub-optimally on non-worst-ca
We consider the distributed version of the Multiple Knapsack Problem (MKP), where $m$ items are to be distributed amongst $n$ processors, each with a knapsack. We propose different distributed approximation algorithms with a tradeoff between time and
We introduce and study a discrete multi-period extension of the classical knapsack problem, dubbed generalized incremental knapsack. In this setting, we are given a set of $n$ items, each associated with a non-negative weight, and $T$ time periods wi
This paper outlines an exact and a heuristic algorithm for the electric vehicle routing problem with a nonlinear charging function (E-VRP-NL) introduced by Montoya et al. (2017). The E-VRP-NL captures several realistic features of electric vehicles i
We study emph{parallel} online algorithms: For some fixed integer $k$, a collective of $k$ parallel processes that perform online decisions on the same sequence of events forms a $k$-emph{copy algorithm}. For any given time and input sequence, th