ﻻ يوجد ملخص باللغة العربية
We construct a Borcherds Kac-Moody (BKM) superalgebra on which the Conway group Co$_0$ acts faithfully. We show that the BKM algebra is generated by the BRST-closed states in a chiral superstring theory. We use this construction to produce denominator identities for the chiral partition functions of the Conway module $V^{s atural}$, a supersymmetric $c=12$ chiral conformal field theory whose (twisted) partition functions enjoy moonshine properties and which has automorphism group isomorphic to Co$_0$. In particular, these functions satisfy a genus zero property analogous to that of monstrous moonshine. Finally, we suggest how one may promote the denominators to spacetime BPS indices in type II string theory, which might thus furnish a physical explanation of the genus zero property of Conway moonshine.
This is an expository introduction to fusion rules for affine Kac-Moody algebras, with major focus on the algorithmic aspects of their computation and the relationship with tensor product decompositions. Many explicit examples are included with figur
We use the theory of Clifford algebras and Vahlen groups to study Weyl groups of hyperbolic Kac-Moody algebras T_n^{++}, obtained by a process of double extension from a Cartan matrix of finite type T_n, whose corresponding generalized Cartan matrices are symmetric.
We present a construction which associates an infinite sequence of Kac-Moody algebras, labeled by a positive integer n, to one single Jordan algebra. For n=1, this reduces to the well known Kantor-Koecher-Tits construction. Our generalization utilize
Weyl group multiple Dirichlet series, introduced by Brubaker, Bump, Chinta, Friedberg and Hoffstein, are expected to be Whittaker coefficients of Eisenstein series on metaplectic groups. Chinta and Gunnells constructed these multiple Dirichlet series
A multidimensional gravitational model containing scalar fields and antisymmetric forms is considered. The manifold is chosen in the form $M = M_0 times M_1 times cdots times M_n$, where $M_i$ are Einstein spaces ($i geq 1$). The sigma-model approach