ترغب بنشر مسار تعليمي؟ اضغط هنا

CrowdMOT: Crowdsourcing Strategies for Tracking Multiple Objects in Videos

67   0   0.0 ( 0 )
 نشر من قبل Samreen Anjum
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Crowdsourcing is a valuable approach for tracking objects in videos in a more scalable manner than possible with domain experts. However, existing frameworks do not produce high quality results with non-expert crowdworkers, especially for scenarios where objects split. To address this shortcoming, we introduce a crowdsourcing platform called CrowdMOT, and investigate two micro-task design decisions: (1) whether to decompose the task so that each worker is in charge of annotating all objects in a sub-segment of the video versus annotating a single object across the entire video, and (2) whether to show annotations from previous workers to the next individuals working on the task. We conduct experiments on a diversity of videos which show both familiar objects (aka - people) and unfamiliar objects (aka - cells). Our results highlight strategies for efficiently collecting higher quality annotations than observed when using strategies employed by todays state-of-art crowdsourcing system.



قيم البحث

اقرأ أيضاً

Allocation strategies improve the efficiency of crowdsourcing by decreasing the work needed to complete individual tasks accurately. However, these algorithms introduce bias by preferentially allocating workers onto easy tasks, leading to sets of com pleted tasks that are no longer representative of all tasks. This bias challenges inference of problem-wide properties such as typical task difficulty or crowd properties such as worker completion times, important information that goes beyond the crowd responses themselves. Here we study inference about problem properties when using an allocation algorithm to improve crowd efficiency. We introduce Decision-Explicit Probability Sampling (DEPS), a method to perform inference of problem properties while accounting for the potential bias introduced by an allocation strategy. Experiments on real and synthetic crowdsourcing data show that DEPS outperforms baseline inference methods while still leveraging the efficiency gains of the allocation method. The ability to perform accurate inference of general properties when using non-representative data allows crowdsourcers to extract more knowledge out of a given crowdsourced dataset.
Semantic aware reconstruction is more advantageous than geometric-only reconstruction for future robotic and AR/VR applications because it represents not only where things are, but also what things are. Object-centric mapping is a task to build an ob ject-level reconstruction where objects are separate and meaningful entities that convey both geometry and semantic information. In this paper, we present MOLTR, a solution to object-centric mapping using only monocular image sequences and camera poses. It is able to localise, track, and reconstruct multiple objects in an online fashion when an RGB camera captures a video of the surrounding. Given a new RGB frame, MOLTR firstly applies a monocular 3D detector to localise objects of interest and extract their shape codes that represent the object shapes in a learned embedding space. Detections are then merged to existing objects in the map after data association. Motion state (i.e. kinematics and the motion status) of each object is tracked by a multiple model Bayesian filter and object shape is progressively refined by fusing multiple shape code. We evaluate localisation, tracking, and reconstruction on benchmarking datasets for indoor and outdoor scenes, and show superior performance over previous approaches.
Measuring airways in chest computed tomography (CT) scans is important for characterizing diseases such as cystic fibrosis, yet very time-consuming to perform manually. Machine learning algorithms offer an alternative, but need large sets of annotate d scans for good performance. We investigate whether crowdsourcing can be used to gather airway annotations. We generate image slices at known locations of airways in 24 subjects and request the crowd workers to outline the airway lumen and airway wall. After combining multiple crowd workers, we compare the measurements to those made by the experts in the original scans. Similar to our preliminary study, a large portion of the annotations were excluded, possibly due to workers misunderstanding the instructions. After excluding such annotations, moderate to strong correlations with the expert can be observed, although these correlations are slightly lower than inter-expert correlations. Furthermore, the results across subjects in this study are quite variable. Although the crowd has potential in annotating airways, further development is needed for it to be robust enough for gathering annotations in practice. For reproducibility, data and code are available online: url{http://github.com/adriapr/crowdairway.git}.
Visual multi-object tracking has the potential to accelerate many forms of quantitative analyses, especially in research communities investigating the motion, behavior, or social interactions within groups of animals. Despite its potential for increa sing analysis throughput, complications related to accessibility, adaptability, accuracy, or scalable application arise with existing tracking systems. Several iterations of prototyping and testing have led us to a multi-object tracking system -- ABCTracker -- that is: accessible in both system as well as technical knowledge requirements, easily adaptable to new videos, and capable of producing accurate tracking data through a mixture of automatic and semi-automatic tracking features.
The spread of misinformation through synthetically generated yet realistic images and videos has become a significant problem, calling for robust manipulation detection methods. Despite the predominant effort of detecting face manipulation in still i mages, less attention has been paid to the identification of tampered faces in videos by taking advantage of the temporal information present in the stream. Recurrent convolutional models are a class of deep learning models which have proven effective at exploiting the temporal information from image streams across domains. We thereby distill the best strategy for combining variations in these models along with domain specific face preprocessing techniques through extensive experimentation to obtain state-of-the-art performance on publicly available video-based facial manipulation benchmarks. Specifically, we attempt to detect Deepfake, Face2Face and FaceSwap tampered faces in video streams. Evaluation is performed on the recently introduced FaceForensics++ dataset, improving the previous state-of-the-art by up to 4.55% in accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا