ترغب بنشر مسار تعليمي؟ اضغط هنا

Recurrent Convolutional Strategies for Face Manipulation Detection in Videos

130   0   0.0 ( 0 )
 نشر من قبل Ekraam Sabir
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The spread of misinformation through synthetically generated yet realistic images and videos has become a significant problem, calling for robust manipulation detection methods. Despite the predominant effort of detecting face manipulation in still images, less attention has been paid to the identification of tampered faces in videos by taking advantage of the temporal information present in the stream. Recurrent convolutional models are a class of deep learning models which have proven effective at exploiting the temporal information from image streams across domains. We thereby distill the best strategy for combining variations in these models along with domain specific face preprocessing techniques through extensive experimentation to obtain state-of-the-art performance on publicly available video-based facial manipulation benchmarks. Specifically, we attempt to detect Deepfake, Face2Face and FaceSwap tampered faces in video streams. Evaluation is performed on the recently introduced FaceForensics++ dataset, improving the previous state-of-the-art by up to 4.55% in accuracy.



قيم البحث

اقرأ أيضاً

84 - Mingyu Ding , An Zhao , Zhiwu Lu 2018
Automated deception detection (ADD) from real-life videos is a challenging task. It specifically needs to address two problems: (1) Both face and body contain useful cues regarding whether a subject is deceptive. How to effectively fuse the two is th us key to the effectiveness of an ADD model. (2) Real-life deceptive samples are hard to collect; learning with limited training data thus challenges most deep learning based ADD models. In this work, both problems are addressed. Specifically, for face-body multimodal learning, a novel face-focused cross-stream network (FFCSN) is proposed. It differs significantly from the popular two-stream networks in that: (a) face detection is added into the spatial stream to capture the facial expressions explicitly, and (b) correlation learning is performed across the spatial and temporal streams for joint deep feature learning across both face and body. To address the training data scarcity problem, our FFCSN model is trained with both meta learning and adversarial learning. Extensive experiments show that our FFCSN model achieves state-of-the-art results. Further, the proposed FFCSN model as well as its robust training strategy are shown to be generally applicable to other human-centric video analysis tasks such as emotion recognition from user-generated videos.
Detecting manipulated facial images and videos is an increasingly important topic in digital media forensics. As advanced face synthesis and manipulation methods are made available, new types of fake face representations are being created which have raised significant concerns for their use in social media. Hence, it is crucial to detect manipulated face images and localize manipulated regions. Instead of simply using multi-task learning to simultaneously detect manipulated images and predict the manipulated mask (regions), we propose to utilize an attention mechanism to process and improve the feature maps for the classification task. The learned attention maps highlight the informative regions to further improve the binary classification (genuine face v. fake face), and also visualize the manipulated regions. To enable our study of manipulated face detection and localization, we collect a large-scale database that contains numerous types of facial forgeries. With this dataset, we perform a thorough analysis of data-driven fake face detection. We show that the use of an attention mechanism improves facial forgery detection and manipulated region localization.
With the proliferation of face image manipulation (FIM) techniques such as Face2Face and Deepfake, more fake face images are spreading over the internet, which brings serious challenges to public confidence. Face image forgery detection has made cons iderable progresses in exposing specific FIM, but it is still in scarcity of a robust fake face detector to expose face image forgeries under complex scenarios such as with further compression, blurring, scaling, etc. Due to the relatively fixed structure, convolutional neural network (CNN) tends to learn image content representations. However, CNN should learn subtle manipulation traces for image forensics tasks. Thus, we propose an adaptive manipulation traces extraction network (AMTEN), which serves as pre-processing to suppress image content and highlight manipulation traces. AMTEN exploits an adaptive convolution layer to predict manipulation traces in the image, which are reused in subsequent layers to maximize manipulation artifacts by updating weights during the back-propagation pass. A fake face detector, namely AMTENnet, is constructed by integrating AMTEN with CNN. Experimental results prove that the proposed AMTEN achieves desirable pre-processing. When detecting fake face images generated by various FIM techniques, AMTENnet achieves an average accuracy up to 98.52%, which outperforms the state-of-the-art works. When detecting face images with unknown post-processing operations, the detector also achieves an average accuracy of 95.17%.
Deep convolutional neural networks (CNNs) have made impressive progress in many video recognition tasks such as video pose estimation and video object detection. However, CNN inference on video is computationally expensive due to processing dense fra mes individually. In this work, we propose a framework called Recurrent Residual Module (RRM) to accelerate the CNN inference for video recognition tasks. This framework has a novel design of using the similarity of the intermediate feature maps of two consecutive frames, to largely reduce the redundant computation. One unique property of the proposed method compared to previous work is that feature maps of each frame are precisely computed. The experiments show that, while maintaining the similar recognition performance, our RRM yields averagely 2x acceleration on the commonly used CNNs such as AlexNet, ResNet, deep compression model (thus 8-12x faster than the original dense models using the efficient inference engine), and impressively 9x acceleration on some binary networks such as XNOR-Nets (thus 500x faster than the original model). We further verify the effectiveness of the RRM on speeding up CNNs for video pose estimation and video object detection.
Crowdsourcing is a valuable approach for tracking objects in videos in a more scalable manner than possible with domain experts. However, existing frameworks do not produce high quality results with non-expert crowdworkers, especially for scenarios w here objects split. To address this shortcoming, we introduce a crowdsourcing platform called CrowdMOT, and investigate two micro-task design decisions: (1) whether to decompose the task so that each worker is in charge of annotating all objects in a sub-segment of the video versus annotating a single object across the entire video, and (2) whether to show annotations from previous workers to the next individuals working on the task. We conduct experiments on a diversity of videos which show both familiar objects (aka - people) and unfamiliar objects (aka - cells). Our results highlight strategies for efficiently collecting higher quality annotations than observed when using strategies employed by todays state-of-art crowdsourcing system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا