ﻻ يوجد ملخص باللغة العربية
It was recently discovered that in some regions of the Galaxy, the cosmic ray (CR) abundance is several orders of magnitude higher than previously thought. Additionally, there is evidence that in molecular cloud envelopes, the CR ionization may be dominated by electrons. We show that for regions with high, electron-dominated ionization, the penetration of CR electrons into molecular clouds is modulated by the electric field that develops as a result of the charge they deposit. We evaluate the significance of this novel mechanism of self-modulation and show that the CR penetration can be reduced by a factor of a few to a few hundred in high-ionization environments, such as those found near the Galactic center.
We analyze the processes governing cosmic-ray (CR) penetration into molecular clouds and the resulting generation of gamma-ray emission. The density of CRs inside a cloud is depleted at lower energies due to the self-excited MHD turbulence. The deple
The study of high-energy gamma rays from passive Giant Molecular Clouds (GMCs) in our Galaxy is an indirect way to characterize and probe the paradigm of the sea of cosmic rays in distant parts of the Galaxy. By using data from the High Altitude Wate
The Supernova Remnant (SNR) HESS J1731-347 displays strong non-thermal TeV gamma-ray and X-ray emission, thus the object is at present time accelerating particles to very high energies. A distinctive feature of this young SNR is the nearby (~30 pc in
We analyze properties of non-thermal radio emission from the Central Molecular Zone (CMZ) and individual molecular clouds, and argue that the observed features can be interpreted in the framework of our recent theory of self-modulation of cosmic rays
A flux of cosmic rays (CRs) propagating through a diffuse ionized gas can excite MHD waves, thus generating magnetic disturbances. We propose a generic model of CR penetration into molecular clouds through their diffuse envelopes, and identify the le