ﻻ يوجد ملخص باللغة العربية
The Supernova Remnant (SNR) HESS J1731-347 displays strong non-thermal TeV gamma-ray and X-ray emission, thus the object is at present time accelerating particles to very high energies. A distinctive feature of this young SNR is the nearby (~30 pc in projection) extended source HESS J1729-345, which is currently unidentified but is in spatial projection coinciding with known molecular clouds (MC). We model the SNR evolution to explore if the TeV emission from HESS J1729-345 can be explained as emission from runaway hadronic cosmic rays (CRs) that are illuminating these MCs. The observational data of HESS J1729-345 and HESS J1731-347 can be reproduced using core-collapse SN models for HESS J1731-347. Starting with different progenitor stars and their pre-supernova environment, we model potential SNR evolution histories along with the CR acceleration in the SNR and the diffusion of the CRs. A simplified 3-dimensional structure of the MCs is introduced based on 12CO data, adopting a distance of 3.2 kpc to the source. A Monte Carlo-based diffusion model for the escaping CRs is developed to deal with the inhomogeneous environment. The fast SNR forward shock speed as implied from the X-ray data can easily be explained when employing scenarios with progenitor star masses between 20 and 25 solar masses, where the SNR shock is still expanding inside the main sequence (MS)-bubble at present time. The TeV spectrum of HESS J1729-345 is satisfactorily fitted by the emission from the highest-energy CRs that have escaped the SNR, using a standard galactic CR diffusion coefficient in the inter-clump medium. The TeV image of HESS J1729-345 can be explained with a reasonable 3-dimensional structure of MCs. The TeV emission from the SNR itself is dominated by leptonic emission in this model. We also explore scenarios where the shock is starting to encounter the dense MS progenitor wind bubble shell.
The galactic cosmic rays are generally believed to be originated in supernova remnants (SNRs), produced in diffusive shock acceleration (DSA) process in supernova blast waves driven by expanding SNRs. One of the key unsettled issue in SNR origin of c
We report an analysis of the interstellar gamma-ray emission from the Chamaeleon, R Coronae Australis (R CrA), and Cepheus and Polaris flare regions with the Fermi Large Area Telescope. They are among the nearest molecular cloud complexes, within ~30
We report an analysis of the interstellar gamma-ray emission from nearby molecular clouds Chamaeleon, R Coronae Australis (R CrA), and Cepheus and Polaris flare regions with the {it Fermi} Large Area Telescope (LAT). They are among the nearest molecu
The SFiNCs (Star Formation in Nearby Clouds) project is an X-ray/infrared study of the young stellar populations in 22 star forming regions with distances <=1 kpc designed to extend our earlier MYStIX survey of more distant clusters. Our central goal
The supernova remnant (SNR) HESS J1731-347 is a young SNR which displays a non-thermal X-ray and TeV shell structure. A molecular cloud at a distance of 3.2 kpc is spatially coincident with the western part of the SNR, and it is likely hit by the SNR