ترغب بنشر مسار تعليمي؟ اضغط هنا

Band Depopulation of Graphene Nanoribbons Induced by Chemical Gating with Amino Groups

104   0   0.0 ( 0 )
 نشر من قبل Nacho Pascual
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic properties of graphene nanoribbons (GNRs) can be precisely tuned by chemical doping. Here we demonstrate that amino (NH$_2$) functional groups attached at the edges of chiral GNRs (chGNRs) can efficiently gate the chGNRs and lead to the valence band (VB) depopulation on a metallic surface. The NH$_2$-doped chGNRs are grown by on-surface synthesis on Au(111) using functionalized bianthracene precursors. Scanning tunneling spectroscopy resolves that the NH$_2$ groups significantly up-shift the bands of chGNRs, causing the Fermi level crossing of the VB onset of chGNRs. Through density functional theory simulations we confirm that the hole-doping behavior is due to an upward shift of the bands induced by the edge NH$_2$ groups.

قيم البحث

اقرأ أيضاً

Topological insulators (TIs) are an emerging class of materials that host highly robust in-gap surface/interface states while maintaining an insulating bulk. While most notable scientific advancements in this field have been focused on TIs and relate d topological crystalline insulators in 2D and 3D, more recent theoretical work has predicted the existence of 1D symmetry-protected topological phases in graphene nanoribbons (GNRs). The topological phase of these laterally-confined, semiconducting strips of graphene is determined by their width, edge shape, and the terminating unit cell, and is characterized by a Z2 invariant (similar to 1D solitonic systems). Interfaces between topologically distinct GNRs characterized by different Z2 are predicted to support half-filled in-gap localized electronic states which can, in principle, be utilized as a tool for material engineering. Here we present the rational design and experimental realization of a topologically-engineered GNR superlattice that hosts a 1D array of such states, thus generating otherwise inaccessible electronic structure. This strategy also enables new end states to be engineered directly into the termini of the 1D GNR superlattice. Atomically-precise topological GNR superlattices were synthesized from molecular precursors on a Au(111) surface under ultra-high vacuum (UHV) conditions and characterized by low temperature scanning tunneling microscopy (STM) and spectroscopy (STS). Our experimental results and first-principles calculations reveal that the frontier band structure of these GNR superlattices is defined purely by the coupling between adjacent topological interface states. This novel manifestation of 1D topological phases presents an entirely new route to band engineering in 1D materials based on precise control of their electronic topology, and is a promising platform for future studies of 1D quantum spin physics.
We investigate electronic transport in lithographically patterned graphene ribbon structures where the lateral confinement of charge carriers creates an energy gap near the charge neutrality point. Individual graphene layers are contacted with metal electrodes and patterned into ribbons of varying widths and different crystallographic orientations. The temperature dependent conductance measurements show larger energy gaps opening for narrower ribbons. The sizes of these energy gaps are investigated by measuring the conductance in the non-linear response regime at low temperatures. We find that the energy gap scales inversely with the ribbon width, thus demonstrating the ability to engineer the band gap of graphene nanostructures by lithographic processes.
Using the density functional theory, we have demonstrated the chemical functionalization of semiconducting graphene nanoribbons (GNRs) with Stone-Wales (SW) defects by carboxyl (COOH) groups. It is found that the geometrical structures and electronic properties of the GNRs changed significantly, and the electrical conductivity of the system could be considerably enhanced by mono-adsorption and double-adsorption of COOH, which sensitively depends upon the axial concentration of SW defects COOH pairs (SWDCPs). With the increase of the axial concentration of SWDCPs, the system would transform from semiconducting behavior to p-type metallic behavior. This fact makes GNRs a possible candidate for chemical sensors and nanoelectronic devices based on graphene nanoribbons.
We study the effects of the structural corrugation or rippling on the electronic properties of undoped armchair graphene nanoribbons (AGNR). First, reanalyzing the single corrugated graphene layer we find that the two inequivalent Dirac points (DP), move away one from the other. Otherwise, the Fermi velocity decrease by increasing rippling. Regarding the AGNRs, whose metallic behavior depends on their width, we analyze in particular the case of the zero gap band-structure AGNRs. By solving the Dirac equation with the adequate boundary condition we show that due to the shifting of the DP a gap opens in the spectra. This gap scale with the square of the rate between the high and the wavelength of the deformation. We confirm this prediction by exact numerical solution of the finite width rippled AGNR. Moreover, we find that the quantum conductance, calculated by the non equilibrium Greens function technique vanish when the gap open. The main conclusion of our results is that a conductance gap should appear for all undoped corrugated AGNR independent of their width.
Graphene nanoribbons (GNRs), low-dimensional platforms for carbon-based electronics, show the promising perspective to also incorporate spin polarization in their conjugated electron system. However, magnetism in GNRs is generally associated to local ized states around zigzag edges, difficult to fabricate and with high reactivity. Here we demonstrate that magnetism can also be induced away from physical GNR zigzag edges through atomically precise engineering topological defects in its interior. A pair of substitutional boron atoms inserted in the carbon backbone breaks the conjugation of their topological bands and builds two spin-polarized boundary states around. The spin state was detected in electrical transport measurements through boron-substituted GNRs suspended between tip and sample of a scanning tunneling microscope. First-principle simulations find that boron pairs induce a spin 1, which is modified by tuning the spacing between pairs. Our results demonstrate a route to embed spin chains in GNRs, turning them basic elements of spintronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا