ﻻ يوجد ملخص باللغة العربية
A emph{$[z, r; g]$-mixed cage} is a mixed graph $z$-regular by arcs, $r$-regular by edges, with girth $g$ and minimum order. %In this paper we study structural properties of mixed cages: Let $n[z,r;g]$ denote the order of a $[z,r;g]$-mixed cage. In this paper we prove that $n[z,r;g]$ is a monotonicity function, with respect of $g$, for $zin {1,2}$, and we use it to prove that the underlying graph of a $[z,r;g]$-mixed cage is 2-connected, for $zin {1,2}$. We also prove that $[z,r;g]$-mixed cages are strong connected. We present bounds of $n[z,r;g]$ and constructions of $[z,r;5]$-mixed graphs and show a $[10,3;5]$-mixed cage of order $50$.
We introduce the notion of a $[z, r; g]$-mixed cage. A $[z, r; g]$-mixed cage is a mixed graph $G$, $z$-regular by arcs, $r$-regular by edges, with girth $g$ and minimum order. In this paper we prove the existence of $[z, r ;g]$-mixed cages and exhib
In 1992, Kalai and Kleitman proved a quasipolynomial upper bound on the diameters of convex polyhedra. Todd and Sukegawa-Kitahara proved tail-quasipolynomial bounds on the diameters of polyhedra. These tail bounds apply when the number of facets is g
A $t$-bar visibility representation of a graph assigns each vertex up to $t$ horizontal bars in the plane so that two vertices are adjacent if and only if some bar for one vertex can see some bar for the other via an unobstructed vertical channel of
The permanent of a multidimensional matrix is the sum of products of entries over all diagonals. By Mincs conjecture, there exists a reachable upper bound on the permanent of 2-dimensional (0,1)-matrices. In this paper we obtain some generalizations
We give upper bounds on the order of the automorphism group of a simple graph