ترغب بنشر مسار تعليمي؟ اضغط هنا

Mixed Cages

58   0   0.0 ( 0 )
 نشر من قبل Gabriela Araujo Dr
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the notion of a $[z, r; g]$-mixed cage. A $[z, r; g]$-mixed cage is a mixed graph $G$, $z$-regular by arcs, $r$-regular by edges, with girth $g$ and minimum order. In this paper we prove the existence of $[z, r ;g]$-mixed cages and exhibit families of mixed cages for some specific values. We also give lower and upper bounds for some choices of $z, r$ and $g$. In particular we present the first results on $[z,r;g]$- mixed cages for $z=1$ and any $rgeq 1$ and $ggeq 3$, and for any $zgeq 1$, $r=1$ and $g=4$.

قيم البحث

اقرأ أيضاً

A emph{$[z, r; g]$-mixed cage} is a mixed graph $z$-regular by arcs, $r$-regular by edges, with girth $g$ and minimum order. %In this paper we study structural properties of mixed cages: Let $n[z,r;g]$ denote the order of a $[z,r;g]$-mixed cage. In t his paper we prove that $n[z,r;g]$ is a monotonicity function, with respect of $g$, for $zin {1,2}$, and we use it to prove that the underlying graph of a $[z,r;g]$-mixed cage is 2-connected, for $zin {1,2}$. We also prove that $[z,r;g]$-mixed cages are strong connected. We present bounds of $n[z,r;g]$ and constructions of $[z,r;5]$-mixed graphs and show a $[10,3;5]$-mixed cage of order $50$.
Let $2 le r < m$ and $g$ be positive integers. An $({r,m};g)$--graph} (or biregular graph) is a graph with degree set ${r,m}$ and girth $g$, and an $({r,m};g)$-cage (or biregular cage) is an $({r,m};g)$-graph of minimum order $n({r,m};g)$. If $m=r+1$ , an $({r,m};g)$-cage is said to be a semiregular cage. In this paper we generalize the reduction and graph amalgam operations from M. Abreu, G. Araujo-Pardo, C. Balbuena, D. Labbate (2011) on the incidence graphs of an affine and a biaffine plane obtaining two new infinite families of biregular cages and two new semiregular cages. The constructed new families are $({r,2r-3};5)$-cages for all $r=q+1$ with $q$ a prime power, and $({r,2r-5};5)$-cages for all $r=q+1$ with $q$ a prime. The new semiregular cages are constructed for r=5 and 6 with 31 and 43 vertices respectively.
We examine array of metal-mesh frameworks for their wide-band absorption. These take the form of quasi-crystal optical cages. An array of cages tends to focus the incoming radiation within each framework. An array of cage-within-cage funnels the radi ation from the outer cage to its inner core even further.
Let $q$ be a prime power; $(q+1,8)$-cages have been constructed as incidence graphs of a non-degenerate quadric surface in projective 4-space $P(4, q)$. The first contribution of this paper is a construction of these graphs in an alternative way by m eans of an explicit formula using graphical terminology. Furthermore by removing some specific perfect dominating sets from a $(q+1,8)$-cage we derive $k$-regular graphs of girth 8 for $k= q-1$ and $k=q$, having the smallest number of vertices known so far.
In this paper, we determine periodicity of quantum walks defined by mixed paths and mixed cycles. By the spectral mapping theorem of quantum walks, consideration of periodicity is reduced to eigenvalue analysis of $eta$-Hermitian adjacency matrices. First, we investigate coefficients of the characteristic polynomials of $eta$-Hermitian adjacency matrices. We show that the characteristic polynomials of mixed trees and their underlying graphs are same. We also define $n+1$ types of mixed cycles and show that every mixed cycle is switching equivalent to one of them. We use these results to discuss periodicity. We show that the mixed paths are periodic for any $eta$. In addition, we provide a necessary and sufficient condition for a mixed cycle to be periodic and determine their periods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا