ﻻ يوجد ملخص باللغة العربية
We consider some problems related to the truncation question in long-range percolation. It is given probabilities that certain long-range oriented bonds are open; assuming that this probabilities are not summable, we ask if the probability of percolation is positive when we truncate the graph, disallowing bonds of range above a possibly large but finite threshold. This question is still open if the set of vertices is $Z^2$. We give some conditions in which the answer is affirmative. One of these results generalize the previous result in [Alves, Hilario, de Lima, Valesin, Journ. Stat. Phys. {bf 122}, 972 (2017)].
We consider different problems within the general theme of long-range percolation on oriented graphs. Our aim is to settle the so-called truncation question, described as follows. We are given probabilities that certain long-range oriented bonds are
We consider directed last-passage percolation on the random graph G = (V,E) where V = Z and each edge (i,j), for i < j, is present in E independently with some probability 0 < p <= 1. To every present edge (i,j) we attach i.i.d. random weights v_{i,j
We consider random walk and self-avoiding walk whose 1-step distribution is given by $D$, and oriented percolation whose bond-occupation probability is proportional to $D$. Suppose that $D(x)$ decays as $|x|^{-d-alpha}$ with $alpha>0$. For random wal
We consider oriented long-range percolation on a graph with vertex set $mathbb{Z}^d times mathbb{Z}_+$ and directed edges of the form $langle (x,t), (x+y,t+1)rangle$, for $x,y$ in $mathbb{Z}^d$ and $t in mathbb{Z}_+$. Any edge of this form is open wi
We consider self-avoiding walk, percolation and the Ising model with long and finite range. By means of the lace expansion we prove mean-field behavior for these models if $d>2(alphawedge2)$ for self-avoiding walk and the Ising model, and $d>3(alphaw