ﻻ يوجد ملخص باللغة العربية
Benzonitrile ($c$-C$_6$H$_5$CN), a polar proxy for benzene ($c$-C$_6$H$_6$}), has the potential to serve as a highly convenient radio probe for aromatic chemistry, provided this ring can be found in other astronomical sources beyond the molecule-rich prestellar cloud TMC-1 where it was first reported by McGuire et al. in 2018. Here we present radio astronomical evidence of benzonitrile in four additional pre-stellar, and possibly protostellar, sources: Serpens 1A, Serpens 1B, Serpens 2, and MC27/L1521F. These detections establish benzonitrile is not unique to TMC-1; rather aromatic chemistry appears to be widespread throughout the earliest stages of star formation, likely persisting at least to the initial formation of a protostar. The abundance of benzonitrile far exceeds predictions from models which well reproduce the abundances of carbon chains, such as HC$_7$N, a cyanpolyyne with the same heavy atoms, indicating the chemistry responsible for planar carbon structures (as opposed to linear ones) in primordial sources is favorable but not well understood. The abundance of benzonitrile relative to carbon-chain molecules displays sizable variations between sources within the Taurus and Serpens clouds, implying the importance of physical conditions and initial elemental reservoirs of the clouds themselves.
Molecular outflows are a direct consequence of accretion, and therefore they represent one of the best tracers of accretion processes in the still poorly understood early phases of high-mass star formation. Previous studies suggested that the SiO abu
To study the vertical distribution of the earliest stages of star formation in galaxies, three edge-on spirals, NGC 891, NGC 3628, and IC 5052 observed by the Spitzer Space Telescope InfraRed Array Camera (IRAC) were examined for compact 8 micron cor
The circumstellar disk of AB Aurigae has garnered strong attention owing to the apparent existence of spirals at a relatively young stage and also the asymmetric disk traced in thermal dust emission. However, the physical conditions of the spirals ar
We study the links between star formation history and structure for a large mass-selected galaxy sample at 0.05 < z_phot < 0.30. The galaxies inhabit a very broad range of environments, from cluster cores to the field. Using HST images, we quantify t
Context: The initial conditions for the gravitational collapse of molecular cloud cores and the subsequent birth of stars are still not well constrained. The characteristic cold temperatures (about 10 K) in such regions require observations at sub-mi