ترغب بنشر مسار تعليمي؟ اضغط هنا

The circumstellar disk of AB Aurigae: evidence for envelope accretion at late stages of star formation?

52   0   0.0 ( 0 )
 نشر من قبل Ya-Wen Tang
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The circumstellar disk of AB Aurigae has garnered strong attention owing to the apparent existence of spirals at a relatively young stage and also the asymmetric disk traced in thermal dust emission. However, the physical conditions of the spirals are still not well understood. The origin of the asymmetric thermal emission is unclear. We observed the disk at 230 GHz (1.3 mm) in both the continuum and the spectral line ^12CO J=2-1 with IRAM 30-m, the Plateau de Bure interferometer, and the Submillimeter Array to sample all spatial scales from 0.37 to about 50. To combine the data obtained from these telescopes, several methods and calibration issues were checked and discussed. The 1.3 mm continuum (dust) emission is resolved into inner disk and outer ring. Molecular gas at high velocities traced by the CO line is detected next to the stellar location. The inclination angle of the disk is found to decrease toward the center. On a larger scale, based on the intensity weighted dispersion and the integrated intensity map of ^12CO J=2-1, four spirals are identified, where two of them are also detected in the near infrared. The total gas mass of the 4 spirals (M_spiral) is 10^-7 < M_spiral < 10^-5 M_sun, which is 3 orders of magnitude smaller than the mass of the gas ring. Surprisingly, the CO gas inside the spiral is apparently counter-rotating with respect to the CO disk, and it only exhibits small radial motion. The wide gap, the warped disk, and the asymmetric dust ring suggest that there is an undetected companion with a mass of 0.03 M_sun at a radius of 45 AU. Although an hypothetical fly-by cannot be ruled out, the most likely explanation of the AB Aurigae system may be inhomogeneous accretion well above or below the main disk plane from the remnant envelope, which can explain both the rotation and large-scale motions detected with the 30-m image.

قيم البحث

اقرأ أيضاً

Aims. Our goal is to determine the molecular composition of the circumstellar disk around AB Aurigae (hereafter, AB Aur). AB Aur is a prototypical Herbig Ae star and the understanding of its disk chemistry is of paramount importance to understand the chemical evolution of the gas in warm disks. Methods. We used the IRAM 30-m telescope to perform a sensitive search for molecular lines in AB Aur as part of the IRAM Large program ASAI (A Chemical Survey of Sun-like Star-forming Regions). These data were complemented with interferometric observations of the HCO+ 1-0 and C17O 1-0 lines using the IRAM Plateau de Bure Interferometer (PdBI). Single-dish and interferometric data were used to constrain chemical models. Results. Throughout the survey, several lines of CO and its isotopologues, HCO+, H2CO, HCN, CN and CS, were detected. In addition, we detected the SO 54-33 and 56-45 lines, confirming the previous tentative detection. Comparing to other T Tauris and Herbig Ae disks, AB Aur presents low HCN 3-2/HCO+ 3-2 and CN 2-1/HCN 3-2 line intensity ratios, similar to other transition disks. AB Aur is the only protoplanetary disk detected in SO thus far. Conclusions. We modeled the line profiles using a chemical model and a radiative transfer 3D code. Our model assumes a flared disk in hydrostatic equilibrium. The best agreement with observations was obtained for a disk with a mass of 0.01 Msun , Rin=110 AU, Rout=550 AU, a surface density radial index of 1.5 and an inclination of 27 deg. The intensities and line profiles were reproduced within a factor of 2 for most lines. This agreement is reasonable taking into account the simplicity of our model that neglects any structure within the disk. However, the HCN 3-2 and CN 2-1 line intensities were predicted more intense by a factor of >10. We discuss several scenarios to explain this discrepancy.
Recent observations of the protoplanetary disc surrounding AB Aurigae have revealed the possible presence of two giant planets in the process of forming. The young measured age of $1-4$Myr for this system allows us to place strict time constraints on the formation histories of the observed planets. Hence we may be able to make a crucial distinction between formation through core accretion (CA) or the gravitational instability (GI), as CA formation timescales are typically Myrs whilst formation through GI will occur within the first $approx10^4-10^5$yrs of disc evolution. We focus our analysis on the $4-13$M$_{rm Jup}$ planet observed at $Rapprox30$AU. We find CA formation timescales for such a massive planet typically exceed the systems age. The planets high mass and wide orbit may instead be indicative of formation through GI. We use smoothed particle hydrodynamic simulations to determine the systems critical disc mass for fragmentation, finding $M_{rm d,crit}=0.3$M$_{odot}$. Viscous evolution models of the discs mass history indicate that it was likely massive enough to exceed $M_{rm d,crit}$ in the recent past, thus it is possible that a young AB Aurigae disc may have fragmented to form multiple giant gaseous protoplanets. Calculations of the Jeans mass in an AB Aurigae-like disc find that fragments may initially form with masses $1.6-13.3$M$_{rm Jup}$, consistent with the planets which have been observed. We therefore propose that the inferred planets in the disc surrounding AB Aurigae may be evidence of planet formation through GI.
Benzonitrile ($c$-C$_6$H$_5$CN), a polar proxy for benzene ($c$-C$_6$H$_6$}), has the potential to serve as a highly convenient radio probe for aromatic chemistry, provided this ring can be found in other astronomical sources beyond the molecule-rich prestellar cloud TMC-1 where it was first reported by McGuire et al. in 2018. Here we present radio astronomical evidence of benzonitrile in four additional pre-stellar, and possibly protostellar, sources: Serpens 1A, Serpens 1B, Serpens 2, and MC27/L1521F. These detections establish benzonitrile is not unique to TMC-1; rather aromatic chemistry appears to be widespread throughout the earliest stages of star formation, likely persisting at least to the initial formation of a protostar. The abundance of benzonitrile far exceeds predictions from models which well reproduce the abundances of carbon chains, such as HC$_7$N, a cyanpolyyne with the same heavy atoms, indicating the chemistry responsible for planar carbon structures (as opposed to linear ones) in primordial sources is favorable but not well understood. The abundance of benzonitrile relative to carbon-chain molecules displays sizable variations between sources within the Taurus and Serpens clouds, implying the importance of physical conditions and initial elemental reservoirs of the clouds themselves.
Very few molecular species have been detected in circumstellar disks surrounding young stellar objects. We are carrying out an observational study of the chemistry of circumstellar disks surrounding T Tauri and Herbig Ae stars. First results of this study are presented in this note. We used the EMIR receivers recently installed at the IRAM 30m telescope to carry a sensitive search for molecular lines in the disks surrounding AB Aur, DM Tau, and LkCa 15. We detected lines of the molecules HCO+, CN, H2CO, SO, CS, and HCN toward AB Aur. In addition, we tentatively detected DCO+ and H2S lines. The line profiles suggest that the CN, HCN, H2CO, CS and SO lines arise in the disk. This makes it the first detection of SO in a circumstellar disk. We have unsuccessfully searched for SO toward DM Tau and LkCa 15, and for c-C3H2 toward AB Aur, DM Tau, and LkCa 15. Our upper limits show that contrary to all the molecular species observed so far, SO is not as abundant in DM Tau as it is in AB Aur. Our results demonstrate that the disk associated with AB Aur is rich in molecular species. Our chemical model shows that the detection of SO is consistent with that expected from a very young disk where the molecular adsorption onto grains does not yet dominate the chemistry.
Recent exo-planetary surveys reveal that planets can orbit and survive around binary stars. This suggests that some fraction of young binary systems which possess massive circumbinary disks (CB) may be in the midst of planet formation. However, there are very few CB disks detected. We revisit one of the known CB disks, the UY Aurigae system, and probe 13CO 2-1, C18O 2-1, SO 5(6)-4(5) and 12CO 3-2 line emission and the thermal dust continuum. Our new results confirm the existence of the CB disk. In addition, the circumstellar (CS) disks are clearly resolved in dust continuum at 1.4 mm. The spectral indices between the wavelengths of 0.85 mm and 6 cm are found to be surprisingly low, being 1.6 for both CS disks. The deprojected separation of the binary is 1.26 based on our 1.4 mm continuum data. This is 0.07 (10 AU) larger than in earlier studies. Combining the fact of the variation of UY Aur B in $R$ band, we propose that the CS disk of an undetected companion UY Aur Bb obscures UY Aur Ba. A very complex kinematical pattern inside the CB disk is observed due to a mixing of Keplerian rotation of the CB disk, the infall and outflow gas. The streaming gas accreting from the CB ring toward the CS disks and possible outflows are also identified and resolved. The SO emission is found to be at the bases of the streaming shocks. Our results suggest that the UY Aur system is undergoing an active accretion phase from the CB disk to the CS disks. The UY Aur B might also be a binary system, making the UY Aur a triple system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا