ترغب بنشر مسار تعليمي؟ اضغط هنا

CASTLE: Regularization via Auxiliary Causal Graph Discovery

132   0   0.0 ( 0 )
 نشر من قبل Trent Kyono
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Regularization improves generalization of supervised models to out-of-sample data. Prior works have shown that prediction in the causal direction (effect from cause) results in lower testing error than the anti-causal direction. However, existing regularization methods are agnostic of causality. We introduce Causal Structure Learning (CASTLE) regularization and propose to regularize a neural network by jointly learning the causal relationships between variables. CASTLE learns the causal directed acyclical graph (DAG) as an adjacency matrix embedded in the neural networks input layers, thereby facilitating the discovery of optimal predictors. Furthermore, CASTLE efficiently reconstructs only the features in the causal DAG that have a causal neighbor, whereas reconstruction-based regularizers suboptimally reconstruct all input features. We provide a theoretical generalization bound for our approach and conduct experiments on a plethora of synthetic and real publicly available datasets demonstrating that CASTLE consistently leads to better out-of-sample predictions as compared to other popular benchmark regularizers.

قيم البحث

اقرأ أيضاً

143 - Han Yang , Kaili Ma , James Cheng 2020
The graph Laplacian regularization term is usually used in semi-supervised representation learning to provide graph structure information for a model $f(X)$. However, with the recent popularity of graph neural networks (GNNs), directly encoding graph structure $A$ into a model, i.e., $f(A, X)$, has become the more common approach. While we show that graph Laplacian regularization brings little-to-no benefit to existing GNNs, and propose a simple but non-trivial variant of graph Laplacian regularization, called Propagation-regularization (P-reg), to boost the performance of existing GNN models. We provide formal analyses to show that P-reg not only infuses extra information (that is not captured by the traditional graph Laplacian regularization) into GNNs, but also has the capacity equivalent to an infinite-depth graph convolutional network. We demonstrate that P-reg can effectively boost the performance of existing GNN models on both node-level and graph-level tasks across many different datasets.
The data drawn from biological, economic, and social systems are often confounded due to the presence of unmeasured variables. Prior work in causal discovery has focused on discrete search procedures for selecting acyclic directed mixed graphs (ADMGs ), specifically ancestral ADMGs, that encode ordinary conditional independence constraints among the observed variables of the system. However, confounded systems also exhibit more general equality restrictions that cannot be represented via these graphs, placing a limit on the kinds of structures that can be learned using ancestral ADMGs. In this work, we derive differentiable algebraic constraints that fully characterize the space of ancestral ADMGs, as well as more general classes of ADMGs, arid ADMGs and bow-free ADMGs, that capture all equality restrictions on the observed variables. We use these constraints to cast causal discovery as a continuous optimization problem and design differentiable procedures to find the best fitting ADMG when the data comes from a confounded linear system of equations with correlated errors. We demonstrate the efficacy of our method through simulations and application to a protein expression dataset. Code implementing our methods is open-source and publicly available at https://gitlab.com/rbhatta8/dcd and will be incorporated into the Ananke package.
Learning a causal directed acyclic graph from data is a challenging task that involves solving a combinatorial problem for which the solution is not always identifiable. A new line of work reformulates this problem as a continuous constrained optimiz ation one, which is solved via the augmented Lagrangian method. However, most methods based on this idea do not make use of interventional data, which can significantly alleviate identifiability issues. This work constitutes a new step in this direction by proposing a theoretically-grounded method based on neural networks that can leverage interventional data. We illustrate the flexibility of the continuous-constrained framework by taking advantage of expressive neural architectures such as normalizing flows. We show that our approach compares favorably to the state of the art in a variety of settings, including perfect and imperfect interventions for which the targeted nodes may even be unknown.
Standard causal discovery methods must fit a new model whenever they encounter samples from a new underlying causal graph. However, these samples often share relevant information - for instance, the dynamics describing the effects of causal relations - which is lost when following this approach. We propose Amortized Causal Discovery, a novel framework that leverages such shared dynamics to learn to infer causal relations from time-series data. This enables us to train a single, amortized model that infers causal relations across samples with different underlying causal graphs, and thus makes use of the information that is shared. We demonstrate experimentally that this approach, implemented as a variational model, leads to significant improvements in causal discovery performance, and show how it can be extended to perform well under hidden confounding.
Regularization is an effective way to promote the generalization performance of machine learning models. In this paper, we focus on label smoothing, a form of output distribution regularization that prevents overfitting of a neural network by softeni ng the ground-truth labels in the training data in an attempt to penalize overconfident outputs. Existing approaches typically use cross-validation to impose this smoothing, which is uniform across all training data. In this paper, we show that such label smoothing imposes a quantifiable bias in the Bayes error rate of the training data, with regions of the feature space with high overlap and low marginal likelihood having a lower bias and regions of low overlap and high marginal likelihood having a higher bias. These theoretical results motivate a simple objective function for data-dependent smoothing to mitigate the potential negative consequences of the operation while maintaining its desirable properties as a regularizer. We call this approach Structural Label Smoothing (SLS). We implement SLS and empirically validate on synthetic, Higgs, SVHN, CIFAR-10, and CIFAR-100 datasets. The results confirm our theoretical insights and demonstrate the effectiveness of the proposed method in comparison to traditional label smoothing.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا