ﻻ يوجد ملخص باللغة العربية
Realistic examples of reaction-diffusion phenomena governing spatial and spatiotemporal pattern formation are rarely isolated systems, either chemically or thermodynamically. However, even formulations of `open reaction-diffusion systems often neglect the role of domain boundaries. Most idealizations of closed reaction-diffusion systems employ no-flux boundary conditions, and often patterns will form up to, or along, these boundaries. Motivated by boundaries of patterning fields related to the emergence of spatial form in embryonic development, we propose a set of mixed boundary conditions for a two-species reaction-diffusion system which forms inhomogeneous solutions away from the boundary of the domain for a variety of different reaction kinetics, with a prescribed uniform state near the boundary. We show that these boundary conditions can be derived from a larger heterogeneous field, indicating that these conditions can arise naturally if cell signalling or other properties of the medium vary in space. We explain the basic mechanisms behind this pattern localization, and demonstrate that it can capture a large range of localized patterning in one, two, and three dimensions, and that this framework can be applied to systems involving more than two species. Furthermore, the boundary conditions proposed lead to more symmetrical patterns on the interior of the domain, and plausibly capture more realistic boundaries in developmental systems. Finally, we show that these isolated patterns are more robust to fluctuations in initial conditions, and that they allow intriguing possibilities of pattern selection via geometry, distinct from known selection mechanisms.
Certain two-component reaction-diffusion systems on a finite interval are known to possess mesa (box-like) steadystate patterns in the singularly perturbed limit of small diffusivity for one of the two solution components. As the diffusivity D of the
Robustness of spatial pattern against perturbations is an indispensable property of developmental processes for organisms, which need to adapt to changing environments. Although specific mechanisms for this robustness have been extensively investigat
Wavelength selection in reaction--diffusion systems can be understood as a coarsening process that is interrupted by counteracting processes at certain wavelengths. We first show that coarsening in mass-conserving systems is driven by self-amplifying
In the nearly seven decades since the publication of Alan Turings work on morphogenesis, enormous progress has been made in understanding both the mathematical and biological aspects of his proposed reaction-diffusion theory. Some of these developmen
This paper proposes the Ricci-flow equation from Riemannian geometry as a general geometric framework for various nonlinear reaction-diffusion systems (and related dissipative solitons) in mathematical biology. More precisely, we propose a conjecture