ترغب بنشر مسار تعليمي؟ اضغط هنا

Ricci Flow and Nonlinear Reaction--Diffusion Systems in Biology, Chemistry, and Physics

538   0   0.0 ( 0 )
 نشر من قبل Vladimir Ivancevic
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes the Ricci-flow equation from Riemannian geometry as a general geometric framework for various nonlinear reaction-diffusion systems (and related dissipative solitons) in mathematical biology. More precisely, we propose a conjecture that any kind of reaction-diffusion processes in biology, chemistry and physics can be modelled by the combined geometric-diffusion system. In order to demonstrate the validity of this hypothesis, we review a number of popular nonlinear reaction-diffusion systems and try to show that they can all be subsumed by the presented geometric framework of the Ricci flow. Keywords: geometrical Ricci flow, nonlinear reaction-diffusion, dissipative solitons and breathers



قيم البحث

اقرأ أيضاً

Certain two-component reaction-diffusion systems on a finite interval are known to possess mesa (box-like) steadystate patterns in the singularly perturbed limit of small diffusivity for one of the two solution components. As the diffusivity D of the second component is decreased below some critical value Dc, with Dc = O(1), the existence of a steady-state mesa pattern is lost, triggering the onset of a mesa self-replication event that ultimately leads to the creation of additional mesas. The initiation of this phenomena is studied in detail for a particular scaling limit of the Brusselator model. Near the existence threshold Dc of a single steady-state mesa, it is shown that an internal layer forms in the center of the mesa. The structure of the solution within this internal layer is shown to be governed by a certain core problem, comprised of a single non-autonomous second-order ODE. By analyzing this core problem using rigorous and formal asymptotic methods, and by using the Singular Limit Eigenvalue Problem (SLEP) method to asymptotically calculate small eigenvalues, an analytical verification of the conditions of Nishiura and Ueyema [Physica D, 130, No. 1, (1999), pp. 73-104], believed to be responsible for self-replication, is given. These conditions include: (1) The existence of a saddle-node threshold at which the steady-state mesa pattern disappears; (2) the dimple-shaped eigenfunction at the threshold, believed to be responsible for the initiation of the replication process; and (3) the stability of the mesa pattern above the existence threshold. Finally, we show that the core problem is universal in the sense that it pertains to a class of reaction-diffusion systems, including the Gierer-Meinhardt model with saturation, where mesa self-replication also occurs.
Realistic examples of reaction-diffusion phenomena governing spatial and spatiotemporal pattern formation are rarely isolated systems, either chemically or thermodynamically. However, even formulations of `open reaction-diffusion systems often neglec t the role of domain boundaries. Most idealizations of closed reaction-diffusion systems employ no-flux boundary conditions, and often patterns will form up to, or along, these boundaries. Motivated by boundaries of patterning fields related to the emergence of spatial form in embryonic development, we propose a set of mixed boundary conditions for a two-species reaction-diffusion system which forms inhomogeneous solutions away from the boundary of the domain for a variety of different reaction kinetics, with a prescribed uniform state near the boundary. We show that these boundary conditions can be derived from a larger heterogeneous field, indicating that these conditions can arise naturally if cell signalling or other properties of the medium vary in space. We explain the basic mechanisms behind this pattern localization, and demonstrate that it can capture a large range of localized patterning in one, two, and three dimensions, and that this framework can be applied to systems involving more than two species. Furthermore, the boundary conditions proposed lead to more symmetrical patterns on the interior of the domain, and plausibly capture more realistic boundaries in developmental systems. Finally, we show that these isolated patterns are more robust to fluctuations in initial conditions, and that they allow intriguing possibilities of pattern selection via geometry, distinct from known selection mechanisms.
Wavelength selection in reaction--diffusion systems can be understood as a coarsening process that is interrupted by counteracting processes at certain wavelengths. We first show that coarsening in mass-conserving systems is driven by self-amplifying mass transport between neighboring high-density domains. We derive a general coarsening criterion and show that coarsening is generically uninterrupted in two-component systems that conserve mass. The theory is then generalized to study interrupted coarsening and anti-coarsening due to weakly-broken mass conservation, providing a general path to analyze wavelength selection in pattern formation far from equilibrium.
Reaction diffusion systems with Turing instability and mass conservation are studied. In such systems, abrupt decays of stripes follow quasi-stationary states in sequence. At steady state, the distance between stripes is much longer than that estimat ed by linear stability analysis at a homogeneous state given by alternative stability conditions. We show that there exist systems in which a one-stripe pattern is solely steady state for an arbitrary size of the systems. The applicability to cell biology is discussed.
Spatially localized 2-D spot patterns occur for a wide variety of two component reaction-diffusion systems in the singular limit of a large diffusivity ratio. Such localized, far-from-equilibrium, patterns are known to exhibit a wide range of differe nt instabilities such as breathing oscillations, spot annihilation, and spot self-replication behavior. Prior numerical simulations of the Schnakenberg and Brusselator systems have suggested that a localized peanut-shaped linear instability of a localized spot is the mechanism initiating a fully nonlinear spot self-replication event. From a development and implementation of a weakly nonlinear theory for shape deformations of a localized spot, it is shown through a normal form amplitude equation that a peanut-shaped linear instability of a steady-state spot solution is always subcritical for both the Schnakenberg and Brusselator reaction-diffusion systems. The weakly nonlinear theory is validated by using the global bifurcation software {em pde2path} [H.~Uecker et al., Numerical Mathematics: Theory, Methods and Applications, {bf 7}(1), (2014)] to numerically compute an unstable, non-radially symmetric, steady-state spot solution branch that originates from a symmetry-breaking bifurcation point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا