ﻻ يوجد ملخص باللغة العربية
On May $28^{th}$ and $29^{th}$, a two day workshop was held virtually, facilitated by the Beyond Center at ASU and Moogsoft Inc. The aim was to bring together leading scientists with an interest in Network Science and Epidemiology to attempt to inform public policy in response to the COVID-19 pandemic. Epidemics are at their core a process that progresses dynamically upon a network, and are a key area of study in Network Science. In the course of the workshop a wide survey of the state of the subject was conducted. We summarize in this paper a series of perspectives of the subject, and where the authors believe fruitful areas for future research are to be found.
We develop a minimalist compartmental model to study the impact of mobility restrictions in Italy during the Covid-19 outbreak. We show that an early lockdown shifts the epidemic in time, while that beyond a critical value of the lockdown strength, t
COVID-19--a viral infectious disease--has quickly emerged as a global pandemic infecting millions of people with a significant number of deaths across the globe. The symptoms of this disease vary widely. Depending on the symptoms an infected person i
Since the beginning of the COVID-19 spreading, the number of studies on the epidemic models increased dramatically. It is important for policy makers to know how the disease will spread, and what are the effects of the policies and environment on the
The impact of the ongoing COVID-19 pandemic is being felt in all spheres of our lives -- cutting across the boundaries of nation, wealth, religions or race. From the time of the first detection of infection among the public, the virus spread though a
We analyze an epidemic model on a network consisting of susceptible-infected-recovered equations at the nodes coupled by diffusion using a graph Laplacian. We introduce an epidemic criterion and examine different vaccination/containment strategies: w