ﻻ يوجد ملخص باللغة العربية
Continuous-variable codes are an expedient solution for quantum information processing and quantum communication involving optical networks. Here we characterize the squeezed comb, a finite superposition of equidistant squeezed coherent states on a line, and its properties as a continuous-variable encoding choice for a logical qubit. The squeezed comb is a realistic approximation to the ideal code proposed by Gottesman, Kitaev, and Preskill [Phys. Rev. A 64, 012310 (2001)], which is fully protected against errors caused by the paradigmatic types of quantum noise in continuous-variable systems: damping and diffusion. This is no longer the case for the code space of finite squeezed combs, and noise robustness depends crucially on the encoding parameters. We analyze finite squeezed comb states in phase space, highlighting their complicated interference features and characterizing their dynamics when exposed to amplitude damping and Gaussian diffusion noise processes. We find that squeezed comb state are more suitable and less error-prone when exposed to damping, which speaks against standard error correction strategies that employ linear amplification to convert damping into easier-to-describe isotropic diffusion noise.
Starting with a thermal squeezed state defined as a conventional thermal state based on an appropriate hamiltonian, we show how an important physical property, the signal-to-noise ratio, is degraded, and propose a simple model of thermalization (Kraus thermalization).
The classical interpretation of the wave function psi(x) reveals an interesting operational aspect of the Helmholtz spectra. It is shown that the traditional Sturm-Liouville problem contains the simplest key to predict the squeezing effect for charged particle states.
We propose a scheme for generating squeezed states in solid state circuits consisting of a nanomechanical resonator (NMR), a superconducting Cooper-pair box (CPB) and a superconducting transmission line resonator (STLR). The nonlinear interaction bet
In the framework of Lindblad theory for open quantum systems, we calculate the entropy of a damped quantum harmonic oscillator which is initially in a quasi-free state. The maximally predictable states are identified as those states producing the min
Current definitions of both squeezing operator and squeezed vacuum state are critically examined on the grounds of consistency with the underlying su(1,1) algebraic structure. Accordingly, the generalized coherent states for su(1,1) in its Schwinger