ترغب بنشر مسار تعليمي؟ اضغط هنا

New quantumness domains through generalized squeezed states

96   0   0.0 ( 0 )
 نشر من قبل Marco Genovese
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Current definitions of both squeezing operator and squeezed vacuum state are critically examined on the grounds of consistency with the underlying su(1,1) algebraic structure. Accordingly, the generalized coherent states for su(1,1) in its Schwinger two-photon realization are proposed as squeezed states. The physical implication of this assumption is that two additional degrees of freedom become available for the control of quantum optical systems. The resulting physical predictions are evaluated in terms of quadrature squeezing and photon statistics, while the application to a Mach-Zehnder interferometer is discussed to show the emergence of nonclassical regions, characterized by negative values of Mandels parameter, which cannot be anticipated by the current formulation, and then outline future possible use in quantum technologies.



قيم البحث

اقرأ أيضاً

We explore squeezed coherent states of a 3-dimensional generalized isotonic oscillator whose radial part is the newly introduced generalized isotonic oscillator whose bound state solutions have been shown to admit the recently discovered $X_1$-Laguer re polynomials. We construct a complete set of squeezed coherent states of this oscillator by exploring the squeezed coherent states of the radial part and combining the latter with the squeezed coherent states of the angular part. We also prove that the three mode squeezed coherent states resolve the identity operator. We evaluate Mandels $Q$-parameter of the obtained states and demonstrate that these states exhibit sub-Possionian and super-Possionian photon statistics. Further, we illustrate the squeezing properties of these states, both in the radial and angular parts, by choosing appropriate observables in the respective parts. We also evaluate Wigner function of these three mode squeezed coherent states and demonstrate squeezing property explicitly.
In this paper we treat coherent-squeezed states of Fock space once more and study some basic properties of them from a geometrical point of view. Since the set of coherent-squeezed states ${ket{alpha, beta} | alpha, beta in fukuso}$ makes a real 4- dimensional surface in the Fock space ${cal F}$ (which is of course not flat), we can calculate its metric. On the other hand, we know that coherent-squeezed states satisfy the minimal uncertainty of Heisenberg under some condition imposed on the parameter space ${alpha, beta}$, so that we can study the metric from the view point of uncertainty principle. Then we obtain a surprising simple form (at least to us). We also make a brief review on Holonomic Quantum Computation by use of a simple model based on nonlinear Kerr effect and coherent-squeezed operators.
169 - S. T. Ali , K. Gorska , A. Horzela 2013
Following the lines of the recent paper of J.-P. Gazeau and F. H. Szafraniec [J. Phys. A: Math. Theor. 44, 495201 (2011)], we construct here three types of coherent states, related to the Hermite polynomials in a complex variable which are orthogonal with respect to a non-rotationally invariant measure. We investigate relations between these coherent states and obtain the relationship between them and the squeezed states of quantum optics. We also obtain a second realization of the canonical coherent states in the Bargmann space of analytic functions, in terms of a squeezed basis. All this is done in the flavor of the classical approach of V. Bargmann [Commun. Pur. Appl. Math. 14, 187 (1961)].
105 - Kae Nemoto 2000
Generalized coherent states are developed for SU(n) systems for arbitrary $n$. This is done by first iteratively determining explicit representations for the SU(n) coherent states, and then determining parametric representations useful for applicatio ns. For SU(n), the set of coherent states is isomorphic to a coset space $SU(n)/SU(n-1)$, and thus shows the geometrical structure of the coset space. These results provide a convenient $(2n - 1)$--dimensional space for the description of arbitrary SU(n) systems. We further obtain the metric and measure on the coset space, and show some properties of the SU(n) coherent states.
125 - Mohammed Daoud 2018
A relation is established in the present paper between Dicke states in a d-dimensional space and vectors in the representation space of a generalized Weyl-Heisenberg algebra of finite dimension d. This provides a natural way to deal with the separabl e and entangled states of a system of N = d-1 symmetric qubit states. Using the decomposition property of Dicke states, it is shown that the separable states coincide with the Perelomov coherent states associated with the generalized Weyl-Heisenberg algebra considered in this paper. In the so-called Majorana scheme, the qudit (d-level) states are represented by N points on the Bloch sphere; roughly speaking, it can be said that a qudit (in a d-dimensional space) is describable by a N-qubit vector (in a N-dimensional space). In such a scheme, the permanent of the matrix describing the overlap between the N qubits makes it possible to measure the entanglement between the N qubits forming the qudit. This is confirmed by a Fubini-Study metric analysis. A new parameter, proportional to the permanent and called perma-concurrence, is introduced for characterizing the entanglement of a symmetric qudit arising from N qubits. For d=3 (i.e., N = 2), this parameter constitutes an alternative to the concurrence for two qubits. Other examples are given for d=4 and 5. A connection between Majorana stars and zeros of a Bargmmann function for qudits closes this article.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا