ﻻ يوجد ملخص باللغة العربية
The trustworthiness of modern networked services is too important to leave to chance. We need to design these services with specific properties in mind, and verify that the properties hold. In this paper, we argue that a compositional network architecture, based on a notion of layering where each layer is its own complete network customized for a specific purpose, is the only plausible approach to making network services verifiable. Realistic examples show how to use the architecture to reason about sophisticated network properties in a modular way. We also describe a prototype in which the basic structures of the architectural model are implemented in efficient P4 code for programmable data planes, then explain how this scaffolding fits into an integrated process of specification, code generation, implementation of additional network functions, and automated verification.
In the current Internet, there is no clean way for affected parties to react to poor forwarding performance: when a domain violates its Service Level Agreement (SLA) with a contractual partner, the partner must resort to ad-hoc probing-based monitori
In contrast to the classic fashion for designing distributed end-to-end (e2e) TCP schemes for cellular networks (CN), we explore another design space by having the CN assist the task of the transport control. We show that in the emerging cellular arc
Mobile location-based services (LBSs) empowered by mobile crowdsourcing provide users with context-aware intelligent services based on user locations. As smartphones are capable of collecting and disseminating massive user location-embedded sensing i
With the recent wave of progress in artificial intelligence (AI) has come a growing awareness of the large-scale impacts of AI systems, and recognition that existing regulations and norms in industry and academia are insufficient to ensure responsibl
We propose a novel resilient drone service composition framework for delivery in dynamic weather conditions. We use a skyline approach to select an optimal set of candidate drone services at the source node in a skyway network. Drone services are ini