ﻻ يوجد ملخص باللغة العربية
The manipulation of the magnetic direction by using the ultrafast laser pulse is attractive for its great advantages in terms of speed and energy efficiency for information storage applications. However, the heating and helicity effects induced by circularly polarized laser excitation are entangled in the helicity-dependent all-optical switching (HD-AOS), which hinders the understanding of magnetization dynamics involved. Here, by applying a dual-pump laser excitation, first with a linearly polarized (LP) laser pulse followed by a circularly polarized (CP) laser pulse, we identify the timescales and contribution from heating and helicity effects in HD-AOS with a Pt/Co/Pt triple layer. When the sample is preheated by the LP laser pulses to a nearly fully demagnetized state, CP laser pulses with a much-reduced power switches the samples magnetization. By varying the time delay between the two pump pulses, we show that the helicity effect, which gives rise to the deterministic helicity induced switching, onsets instantly upon laser excitation, and only exists for less than 0.2 ps close to the laser pulse duration of 0.15 ps. The results reveal that that the transient magnetization state upon which CP laser pulses impinge is the key factor for achieving HD-AOS, and importantly, the tunability between heating and helicity effects with the unique dual-pump laser excitation approach will enable HD-AOS in a wide range of magnetic material systems for the potential ultrafast spintronics applications.
Using time-resolved magneto-optical Kerr effect (TR-MOKE) method, helicity-dependent all-optical magnetization switching (HD-AOS) is observed in ferrimagnetic TbFeCo films. The thermal effect and opto-magneto effects are separately justified after si
Domain wall displacement in Co/Pt thin films induced by not only fs- but also ps-laser pulses is demonstrated using time-resolved magneto-optical Faraday imaging. We evidence multi-pulse helicity-dependent laser-induced domain wall motion in all-opti
All-optical helicity dependent switching (AO-HDS), deterministic control of magnetization by circularly polarized laser pulses, allows to efficiently manipulate spins without the need of a magnetic field. However, AO-HDS in ferromagnetic metals so fa
In this work, we propose helicity-dependent switching (HDS) of magnetization of Co/Pt for energy efficient optical receiver. Designing a low power optical receiver for optical-to-electrical signal conversion has proven to be very challenging. Current
Ultrafast control of the magnetization in ps timescales by fs laser pulses offers an attractive avenue for applications such as fast magnetic devices for logic and memory. However, ultrafast helicity-independent all-optical switching (HI-AOS) of the