ﻻ يوجد ملخص باللغة العربية
Domain wall displacement in Co/Pt thin films induced by not only fs- but also ps-laser pulses is demonstrated using time-resolved magneto-optical Faraday imaging. We evidence multi-pulse helicity-dependent laser-induced domain wall motion in all-optical switchable Co/Pt multilayers with a laser energy below the switching threshold. Domain wall displacement of about 2 nm per 2- ps pulse is achieved. By investigating separately the effect of linear and circular polarization, we reveal that laser-induced domain wall motion results from a complex interplay between pinning, temperature gradient and helicity effect. Then, we explore the microscopic origin of the helicity effect acting on the domain wall. These experimental results enhance the understanding of the mechanism of all-optical switching in ultra-thin ferromagnetic films.
The interplay of light and magnetism has been a topic of interest since the original observations of Faraday and Kerr where magnetic materials affect the light polarization. While these effects have historically been exploited to use light as a probe
The ideal intrinsic barriers to domain switching in c-phase PbTiO_3 (PTO), PbZrO_3 (PZO), and PbZr_{1-x}Ti_xO_3 (PZT) are investigated via first-principles computational methods. The effects of epitaxial strain on the atomic structure, ferroelectric
Thin films of orthorhombic TbMnO3, as well as other orthorhombic manganites, epitaxially grown on cubic SrTiO3 substrates display an induced magnetic moment that is absent in the bulk (antiferromagnetic) counterpart. Here we show that there is a clea
We have shown that polarized neutron reflectometry can determine in a model-free way not only the mean magnetization of a ferromagnetic thin film at any point of a hysteresis cycle, but also the mean square dispersion of the magnetization vectors of
We investigate magnetic domain wall (MDW) dynamics induced by applied electric fields in ferromagnetic-ferroelectric thin-film heterostructures. In contrast to conventional driving mechanisms where MDW motion is induced directly by magnetic fields or