ﻻ يوجد ملخص باللغة العربية
Transformer-based pre-training models like BERT have achieved remarkable performance in many natural language processing tasks.However, these models are both computation and memory expensive, hindering their deployment to resource-constrained devices. In this work, we propose TernaryBERT, which ternarizes the weights in a fine-tuned BERT model. Specifically, we use both approximation-based and loss-aware ternarization methods and empirically investigate the ternarization granularity of different parts of BERT. Moreover, to reduce the accuracy degradation caused by the lower capacity of low bits, we leverage the knowledge distillation technique in the training process. Experiments on the GLUE benchmark and SQuAD show that our proposed TernaryBERT outperforms the other BERT quantization methods, and even achieves comparable performance as the full-precision model while being 14.9x smaller.
We investigate the impact of aggressive low-precision representations of weights and activations in two families of large LSTM-based architectures for Automatic Speech Recognition (ASR): hybrid Deep Bidirectional LSTM - Hidden Markov Models (DBLSTM-H
Deep language models such as BERT pre-trained on large corpus have given a huge performance boost to the state-of-the-art information retrieval ranking systems. Knowledge embedded in such models allows them to pick up complex matching signals between
Grapheme-to-phoneme (G2P) conversion is an important task in automatic speech recognition and text-to-speech systems. Recently, G2P conversion is viewed as a sequence to sequence task and modeled by RNN or CNN based encoder-decoder framework. However
Recently, transformer-based language models such as BERT have shown tremendous performance improvement for a range of natural language processing tasks. However, these language models usually are computation expensive and memory intensive during infe
End-to-end approaches open a new way for more accurate and efficient spoken language understanding (SLU) systems by alleviating the drawbacks of traditional pipeline systems. Previous works exploit textual information for an SLU model via pre-trainin