ترغب بنشر مسار تعليمي؟ اضغط هنا

FLASHING: New high-velocity H$_2$O masers in IRAS 18286$-$0959

136   0   0.0 ( 0 )
 نشر من قبل Hiroshi Imai
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hiroshi Imai




اسأل ChatGPT حول البحث

We discovered new high-velocity components of H$_2$O maser emission in one of the water fountain sources, IRAS~18286$-$0959, which has been monitored using the Nobeyama 45 m telescope in the new FLASHING (Finest Legacy Acquisitions of SiO- and H$_2$O-maser Ignitions by Nobeyama Generation) project since 2018 December. The maser spectra show new, extremely high expansion velocities ($>$200~km~s$^{-1}$ projected in the line of sight) components, some of which are located symmetrically in the spectrum with respect to the systemic velocity. They were also mapped with KaVA (KVN and VERA Combined Array) in 2019 March. We located some of these maser components closer to the central stellar system than other high velocity components (50--200~km~s$^{-1}$) that have been confirmed to be associated with the known bipolar outflow. The new components would flash in the fast collimated jet at a speed over 300~km~s$^{-1}$ (soon) after 2011 when they had not been detected. The fastest of the new components seem to indicate rapid deceleration in these spectra, however our present monitoring is still too sparse to unambiguously confirm it (up to 50~km~s$^{-1}$yr$^{-1}$) and too short to reveal their terminal expansion velocity, which will be equal to the expansion velocity that has been observed ($v_{rm exp}sim$120~km~s$^{-1}$). Future occurrences of such extreme velocity components may provide a good opportunity to investigate possible recurrent outflow ignitions. Thus sculpture of the parental envelope will be traced by the dense gas that is entrained by the fast jet and exhibits spectacular distributions of the relatively stable maser features.



قيم البحث

اقرأ أيضاً

185 - Hiroshi Imai 2009
We observed CO J=3-2 emission from the water fountain sources, which exhibit high-velocity collimated stellar jets traced by water maser emission, with the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope. We detected the CO emission from two sources, IRAS 16342-3814 and IRAS 18286-0959. The IRAS 16342-3814 CO emission exhibits a spectrum that is well fit to a Gaussian profile, rather than to a parabolic profile, with a velocity width (FWHM) of 158+/-6 km/s and an intensity peak at VLSR = 50+/-2 km/s. The mass loss rate of the star is estimated to be ~2.9x10^-5 M_sun/yr. Our morpho-kinematic models suggest that the CO emission is optically thin and associated with a bipolar outflow rather than with a (cold and relatively small) torus. The IRAS 18286-0959 CO emission has a velocity width (FWHM) of 3.0+/-0.2 km/s, smaller than typically seen in AGB envelopes. The narrow velocity width of the CO emission suggests that it originates from either an interstellar molecular cloud or a slowly-rotating circumstellar envelope that harbors the water maser source.
113 - Hiroshi Imai 2012
We report on results of astrometric observations of water vapor masers in the water fountain source IRAS 18286-0959 (I18286) with the VLBI Exploration of Radio Astrometry (VERA). These observations yielded an annual parallax of IRAS 18286-0959, pi=0. 277+/-0.041 mas, corresponding to a heliocentric distance of D=3.61(+0.63)(-0.47) kpc. The maser feature, whose annual parallax was measured, showed the absolute proper motion of (mu_alpha, mu_delta)=(-3.2 +/- 0.3, -7.2 +/- 0.2) [mas/yr]. The intrinsic motion of the maser feature in the internal motions of the cluster of features in I18286 does not seem to trace the motion of the bipolar jet of I18286. Taking into account this intrinsic motion, the derived motion of the maser feature is roughly equal to that of the maser source I18286 itself. The proximity of I18286 to the Galactic midplane (z~10 pc) suggests that the parental star of the water fountain source in I18286 should be intermediate-mass AGB/post-AGB star, but the origin of a large deviation of the systemic source motion from that expected from the Galactic rotation curve is still unclear.
We present a model in which the 22 GHz H$_2$O masers observed in star-forming regions occur behind shocks propagating in dense regions (preshock density $n_0 sim 10^6 - 10^8$ cm$^{-3}$). We focus on high-velocity ($v_s > 30$ km s$^{-1}$) dissociative J shocks in which the heat of H$_2$ re-formation maintains a large column of $sim 300-400$ K gas; at these temperatures the chemistry drives a considerable fraction of the oxygen not in CO to form H$_2$O. The H$_2$O column densities, the hydrogen densities, and the warm temperatures produced by these shocks are sufficiently high to enable powerful maser action. The observed brightness temperatures (generally $sim 10^{11} - 10^{14}$ K) are the result of coherent velocity regions that have dimensions in the shock plane that are 10 to 100 times the shock thickness of $sim 10^{13}$ cm. The masers are therefore beamed towards the observer, who typically views the shock edge-on, or perpendicular to the shock velocity; the brightest masers are then observed with the lowest line of sight velocities with respect to the ambient gas. We present numerical and analytic studies of the dependence of the maser inversion, the resultant brightness temperature, the maser spot size and shape, the isotropic luminosity, and the maser region magnetic field on the shock parameters and the coherence path length; the overall result is that in galactic H$_2$O 22 GHz masers these observed parameters can be produced in J shocks with $n_0sim 10^6 - 10^8$ cm$^{-3}$ and $v_s sim 30 -200$ km s$^{-1}$. A number of key observables such as maser shape, brightness temperature, and global isotropic luminosity depend only on the particle flux into the shock, $j=n_0v_s$, rather than on $n_0$ and $v_s$ separately.
We report on the detection of SiO and water masers toward a newly found bipolar nebula, IRAS 19312+1950. This object exhibits extreme red IRAS color log (F25/F12)=0.5 and log (F60/F25)=0.7 and a nebulosity having a size of about 30 extended to the So uth-West in the 2MASS near-infrared image. Toward this object, we have detected emission from the H2O 6(1,6)-5(2,3) transition, the SiO J=1-0, v=1 and 2, and J=2-1, v=1 transitions, and the SO 2(2)--1(1) and H13CN J=1-0 transitions. The thermal lines of SO and H13CN are shifted by about 12 km/s in radial velocity with respect to the maser lines, indicating that thermal emission comes from the background molecular cloud. However, the SiO J=2-1, v=2 spectrum shows another component of SiO emission separated by 26 km/s from the main component, that might be formed in a rotating or expanding shell.
We measured the trigonometric annual parallax of H$_2$O maser source associated with the massive star-forming regions IRAS 06061+2151 with VERA. The annual parallax of $0.496pm0.031$ mas corresponding to a distance of $2.02^{+0.13}_{-0.12}$ kpc was o btained by 10 epochs of observations from 2007 October to 2009 September. This distance was obtained with a higher accuracy than the photometric distance previously measured, and places IRAS 06061+2151 in the Perseus spiral arm. We found that IRAS 06061+2151 also has a peculiar motion of larger than 15 km s$^{-1}$ counter to the Galactic rotation. That is similar to five sources in the Perseus spiral arm, whose parallaxes and proper motions have already been measured with higher accuracy. Moreover, these sources move at on average 27 km s$^{-1}$ toward the Galactic center and counter to the Galactic rotation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا