ﻻ يوجد ملخص باللغة العربية
We observed CO J=3-2 emission from the water fountain sources, which exhibit high-velocity collimated stellar jets traced by water maser emission, with the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope. We detected the CO emission from two sources, IRAS 16342-3814 and IRAS 18286-0959. The IRAS 16342-3814 CO emission exhibits a spectrum that is well fit to a Gaussian profile, rather than to a parabolic profile, with a velocity width (FWHM) of 158+/-6 km/s and an intensity peak at VLSR = 50+/-2 km/s. The mass loss rate of the star is estimated to be ~2.9x10^-5 M_sun/yr. Our morpho-kinematic models suggest that the CO emission is optically thin and associated with a bipolar outflow rather than with a (cold and relatively small) torus. The IRAS 18286-0959 CO emission has a velocity width (FWHM) of 3.0+/-0.2 km/s, smaller than typically seen in AGB envelopes. The narrow velocity width of the CO emission suggests that it originates from either an interstellar molecular cloud or a slowly-rotating circumstellar envelope that harbors the water maser source.
We observed four water fountain sources in the CO J=3-2 line emission with the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope in 2010-2011. The water fountain sources are evolved stars that form high-velocity collimated jets traced
We investigate the circumstellar dust shell of the water fountain source IRAS 16342-3814. We performed two-dimensional radiative transfer modeling of the dust shell, taking into account previously observed spectral energy distributions (SEDs) and our
We report on results of astrometric observations of water vapor masers in the water fountain source IRAS 18286-0959 (I18286) with the VLBI Exploration of Radio Astrometry (VERA). These observations yielded an annual parallax of IRAS 18286-0959, pi=0.
In this work we aimed to describe the three-dimensional morphology and kinematics of the molecular gas of the water-fountain nebula IRAS 16342-3814. In order to do this, we retrieved data from the ALMA archive to analyse it using a simple spatio-kine
We have mapped 12CO J=3-2 and other molecular lines from the water-fountain bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with ~0.35 resolution using ALMA. We find (i) two very high-speed knotty, jet-like molecular outflows, (ii) a central high-