ترغب بنشر مسار تعليمي؟ اضغط هنا

Reinforcement Learning-based N-ary Cross-Sentence Relation Extraction

94   0   0.0 ( 0 )
 نشر من قبل Hoda Eldardiry
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The models of n-ary cross sentence relation extraction based on distant supervision assume that consecutive sentences mentioning n entities describe the relation of these n entities. However, on one hand, this assumption introduces noisy labeled data and harms the models performance. On the other hand, some non-consecutive sentences also describe one relation and these sentences cannot be labeled under this assumption. In this paper, we relax this strong assumption by a weaker distant supervision assumption to address the second issue and propose a novel sentence distribution estimator model to address the first problem. This estimator selects correctly labeled sentences to alleviate the effect of noisy data is a two-level agent reinforcement learning model. In addition, a novel universal relation extractor with a hybrid approach of attention mechanism and PCNN is proposed such that it can be deployed in any tasks, including consecutive and nonconsecutive sentences. Experiments demonstrate that the proposed model can reduce the impact of noisy data and achieve better performance on general n-ary cross sentence relation extraction task compared to baseline models.



قيم البحث

اقرأ أيضاً

Past work in relation extraction has focused on binary relations in single sentences. Recent NLP inroads in high-value domains have sparked interest in the more general setting of extracting n-ary relations that span multiple sentences. In this paper , we explore a general relation extraction framework based on graph long short-term memory networks (graph LSTMs) that can be easily extended to cross-sentence n-ary relation extraction. The graph formulation provides a unified way of exploring different LSTM approaches and incorporating various intra-sentential and inter-sentential dependencies, such as sequential, syntactic, and discourse relations. A robust contextual representation is learned for the entities, which serves as input to the relation classifier. This simplifies handling of relations with arbitrary arity, and enables multi-task learning with related relations. We evaluate this framework in two important precision medicine settings, demonstrating its effectiveness with both conventional supervised learning and distant supervision. Cross-sentence extraction produced larger knowledge bases. and multi-task learning significantly improved extraction accuracy. A thorough analysis of various LSTM approaches yielded useful insight the impact of linguistic analysis on extraction accuracy.
141 - Po-Ting Lai , Zhiyong Lu 2021
A biomedical relation statement is commonly expressed in multiple sentences and consists of many concepts, including gene, disease, chemical, and mutation. To automatically extract information from biomedical literature, existing biomedical text-mini ng approaches typically formulate the problem as a cross-sentence n-ary relation-extraction task that detects relations among n entities across multiple sentences, and use either a graph neural network (GNN) with long short-term memory (LSTM) or an attention mechanism. Recently, Transformer has been shown to outperform LSTM on many natural language processing (NLP) tasks. In this work, we propose a novel architecture that combines Bidirectional Encoder Representations from Transformers with Graph Transformer (BERT-GT), through integrating a neighbor-attention mechanism into the BERT architecture. Unlike the original Transformer architecture, which utilizes the whole sentence(s) to calculate the attention of the current token, the neighbor-attention mechanism in our method calculates its attention utilizing only its neighbor tokens. Thus, each token can pay attention to its neighbor information with little noise. We show that this is critically important when the text is very long, as in cross-sentence or abstract-level relation-extraction tasks. Our benchmarking results show improvements of 5.44% and 3.89% in accuracy and F1-measure over the state-of-the-art on n-ary and chemical-protein relation datasets, suggesting BERT-GT is a robust approach that is applicable to other biomedical relation extraction tasks or datasets.
Relation extraction aims to extract relational facts from sentences. Previous models mainly rely on manually labeled datasets, seed instances or human-crafted patterns, and distant supervision. However, the human annotation is expensive, while human- crafted patterns suffer from semantic drift and distant supervision samples are usually noisy. Domain adaptation methods enable leveraging labeled data from a different but related domain. However, different domains usually have various textual relation descriptions and different label space (the source label space is usually a superset of the target label space). To solve these problems, we propose a novel model of relation-gated adversarial learning for relation extraction, which extends the adversarial based domain adaptation. Experimental results have shown that the proposed approach outperforms previous domain adaptation methods regarding partial domain adaptation and can improve the accuracy of distance supervised relation extraction through fine-tuning.
Most information extraction methods focus on binary relations expressed within single sentences. In high-value domains, however, $n$-ary relations are of great demand (e.g., drug-gene-mutation interactions in precision oncology). Such relations often involve entity mentions that are far apart in the document, yet existing work on cross-sentence relation extraction is generally confined to small text spans (e.g., three consecutive sentences), which severely limits recall. In this paper, we propose a novel multiscale neural architecture for document-level $n$-ary relation extraction. Our system combines representations learned over various text spans throughout the document and across the subrelation hierarchy. Widening the systems purview to the entire document maximizes potential recall. Moreover, by integrating weak signals across the document, multiscale modeling increases precision, even in the presence of noisy labels from distant supervision. Experiments on biomedical machine reading show that our approach substantially outperforms previous $n$-ary relation extraction methods.
105 - Seongsik Park , Harksoo Kim 2021
Sentence-level relation extraction mainly aims to classify the relation between two entities in a sentence. The sentence-level relation extraction corpus often contains data that are difficult for the model to infer or noise data. In this paper, we p ropose a curriculum learning-based relation extraction model that splits data by difficulty and utilizes them for learning. In the experiments with the representative sentence-level relation extraction datasets, TACRED and Re-TACRED, the proposed method obtained an F1-score of 75.0% and 91.4% respectively, which are the state-of-the-art performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا