ﻻ يوجد ملخص باللغة العربية
This paper proposes a new method that combines check-pointing methods with error-controlled lossy compression for large-scale high-performance Full-Waveform Inversion (FWI), an inverse problem commonly used in geophysical exploration. This combination can significantly reduce data movement, allowing a reduction in run time as well as peak memory. In the Exascale computing era, frequent data transfer (e.g., memory bandwidth, PCIe bandwidth for GPUs, or network) is the performance bottleneck rather than the peak FLOPS of the processing unit. Like many other adjoint-based optimization problems, FWI is costly in terms of the number of floating-point operations, large memory footprint during backpropagation, and data transfer overheads. Past work for adjoint methods has developed checkpointing methods that reduce the peak memory requirements during backpropagation at the cost of additional floating-point computations. Combining this traditional checkpointing with error-controlled lossy compression, we explore the three-way tradeoff between memory, precision, and time to solution. We investigate how approximation errors introduced by lossy compression of the forward solution impact the objective function gradient and final inverted solution. Empirical results from these numerical experiments indicate that high lossy-compression rates (compression factors ranging up to 100) have a relatively minor impact on convergence rates and the quality of the final solution.
Recently, the Wasserstein loss function has been proven to be effective when applied to deterministic full-waveform inversion (FWI) problems. We consider the application of this loss function in Bayesian FWI so that the uncertainty can be captured in
Seismic full-waveform inversion (FWI), which uses iterative methods to estimate high-resolution subsurface models from seismograms, is a powerful imaging technique in exploration geophysics. In recent years, the computational cost of FWI has grown ex
In this article, continuous Galerkin finite elements are applied to perform full waveform inversion (FWI) for seismic velocity model building. A time-domain FWI approach is detailed that uses meshes composed of variably sized triangular elements to d
The Hessian matrix plays an important role in correct interpretation of the multiple scattered wave fields inside the FWI frame work. Due to the high computational costs, the computation of the Hessian matrix is not feasible. Consequently, FWI produc
In this paper, authors focus effort on improving the conventional discrete velocity method (DVM) into a multiscale scheme in finite volume framework for gas flow in all flow regimes. Unlike the typical multiscale kinetic methods unified gas-kinetic s