ﻻ يوجد ملخص باللغة العربية
We study the near-infrared (NIR) scattering in LDN 1642, its correlation with the cloud structure, and the ability of dust models to simultaneously explain sub-millimetre emission, NIR extinction, and NIR scattering. We use observations from the HAWK-I instrument to measure the NIR surface brightness and extinction. These are compared with Herschel data on dust emission and, with radiative transfer modelling, with predictions calculated for different dust models. We find an optical depth ratio $tau(250,mu{rm m})/tau(J)approx 10^{-3}$, confirming earlier findings of high sub-millimetre emissivity. The relationships between the column density derived from dust emission and the NIR colour excesses is linear and consistent with the standard NIR extinction curve. The extinction peaks at $A_J=2.6,$mag, the NIR surface brightness remaining correlated with $N({rm H}_2)$ without saturation. Radiative transfer models can fit the sub-millimetre data with any of the tested dust models. However, these predict a NIR extinction that is higher and a NIR surface brightness that is lower than in observations. If the dust sub-millimetre emissivity is rescaled to the observed value of $tau(250,mu{rm m})/tau(J)$, dust models with high NIR albedo can reach the observed level of NIR surface brightness. The NIR extinction of the models tends to be higher than directly measured, which is reflected in the shape of the NIR surface brightness spectra. The combination of emission, extinction, and scattering measurements provides strong constraints on dust models. The observations of LDN 1642 indicate clear dust evolution, including a strong increase in the sub-millimetre emissivity, not yet fully explained by the current dust models.
We study the anomalous microwave emission (AME) in the Lynds Dark Nebula (LDN) 1780 on two angular scales. Using available ancillary data at an angular resolution of 1 degree, we construct an SED between 0.408 GHz to 2997 GHz. We show that there is a
We present a model for the diffuse interstellar dust that explains the observed wavelength-dependence of extinction, emission, linear and circular polarisation of light. The model is set-up with a small number of parameters. It consists of a mixture
We present the results based on the optical $R$-band polarization observations of 280 stars distributed towards the dark globule LDN,1225. {it Gaia} data release 2 parallaxes along with the polarization data of $sim$200 stars have been used to (a) co
The large majority of extinction sight lines in our Galaxy obey a simple relation depending on one parameter, the total-to-selective extinction coefficient, Rv. Different values of Rv are able to match the whole extinction curve through different env
We report new dust polarization results of a nearly edge-on disk in the HH 212 protostellar system, obtained with ALMA at ~ 0.035 (14 au) resolution in continuum at lambda ~ 878 um. Dust polarization is detected within ~ 44 au of the central source,