ﻻ يوجد ملخص باللغة العربية
Hybrid density-functional calculation is one of the most commonly adopted electronic structure theory used in computational chemistry and materials science because of its balance between accuracy and computational cost. Recently, we have developed a novel scheme called NAO2GTO to achieve linear scaling (Order-N) calculations for hybrid density-functionals. In our scheme, the most time-consuming step is the calculation of the electron repulsion integrals (ERIs) part. So how to create an even distribution of these ERIs in parallel implementation is an issue of particular importance. Here, we present two static scalable distributed algorithms for the ERIs computation. Firstly, the ERIs are distributed over ERIs shell pairs. Secondly, the ERIs is distributed over ERIs shell quartets. In both algorithms, the calculation of ERIs is independent of each other, so the communication time is minimized. We show our speedup results to demonstrate the performance of these static parallel distributed algorithms in the Hefei Order-N packages for textit{ab initio} simulations (HONPAS).
This work presents a dynamic parallel distribution scheme for the Hartree-Fock exchange~(HFX) calculations based on the real-space NAO2GTO framework. The most time-consuming electron repulsion integrals~(ERIs) calculation is perfectly load-balanced w
Real-time time-dependent density functional theory (rt-TDDFT) with hybrid exchange-correlation functional has wide-ranging applications in chemistry and material science simulations. However, it can be thousands of times more expensive than a convent
We present an efficient, linear-scaling implementation for building the (screened) Hartree-Fock exchange (HFX) matrix for periodic systems within the framework of numerical atomic orbital (NAO) basis functions. Our implementation is based on the loca
Real-time time-dependent density functional theory (RT-TDDFT) is known to be hindered by the very small time step (attosecond or smaller) needed in the numerical simulation due to the fast oscillation of electron wavefunctions, which significantly li
We present a new method to accelerate real time-time dependent density functional theory (rt-TDDFT) calculations with hybrid exchange-correlation functionals. For large basis set, the computational bottleneck for large scale calculations is the appli