ﻻ يوجد ملخص باللغة العربية
Viscoelastic flows occur widely, and numerical simulations of them are important for a range of industrial applications. Simulations of viscoelastic flows are more challenging than their Newtonian counterparts due to the presence of exponential gradients in polymeric stress fields, which can lead to catastrophic instabilities if not carefully handled. A key development to overcome this issue is the log-conformation formulation, which has been applied to a range of numerical methods, but not previously applied to Smoothed Particle Hydrodynamics (SPH). Here we present a 2D incompressible SPH algorithm for viscoelastic flows which, for the first time, incorporates a log-conformation formulation with an elasto-viscous stress splitting (EVSS) technique. The resulting scheme enables simulations of flows at high Weissenberg numbers (accurate up to Wi=85 for Poiseuille flow). The method is robust, and able to handle both internal and free-surface flows, and a range of linear and non-linear constitutive models. Several test cases are considerd included flow past a periodic array of cylinders and jet buckling. This presents a significant step change in capabilties compared to previous SPH algorithms for viscoelastic flows, and has the potential to simulate a wide range of new and challenging applications.
This work presents a new multiphase SPH model that includes the shifting algorithm and a variable smoothing length formalism to simulate multi-phase flows with accuracy and proper interphase management. The implementation was performed in the DualSPH
In this study we investigated the capabilities of the mesh-free, Lagrangian particle method (Smoothed Particle Hydrodynamics, SPH) to simulate the detailed hydrodynamic processes generated by both spilling and plunging breaking waves within the surf
The standard formulation of the smoothed particle hydrodynamics (SPH) assumes that the local density distribution is differentiable. This assumption is used to derive the spatial derivatives of other quantities. However, this assumption breaks down a
At present, the giant impact (GI) is the most widely accepted model for the origin of the Moon. Most of the numerical simulations of GI have been carried out with the smoothed particle hydrodynamics (SPH) method. Recently, however, it has been pointe
In this paper, we present a new formulation of smoothed particle hydrodynamics (SPH), which, unlike the standard SPH (SSPH), is well-behaved at the contact discontinuity. The SSPH scheme cannot handle discontinuities in density (e.g. the contact disc