ترغب بنشر مسار تعليمي؟ اضغط هنا

A Density Independent Formulation of Smoothed Particle Hydrodynamics

293   0   0.0 ( 0 )
 نشر من قبل Takayuki R. Saitoh
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The standard formulation of the smoothed particle hydrodynamics (SPH) assumes that the local density distribution is differentiable. This assumption is used to derive the spatial derivatives of other quantities. However, this assumption breaks down at the contact discontinuity. At the contact discontinuity, the density of the low-density side is overestimated while that of the high-density side is underestimated. As a result, the pressure of the low (high) density side is over (under) estimated. Thus, unphysical repulsive force appears at the contact discontinuity, resulting in the effective surface tension. This tension suppresses fluid instabilities. In this paper, we present a new formulation of SPH, which does not require the differentiability of density. Instead of the mass density, we adopt the internal energy density (pressure), and its arbitrary function, which are smoothed quantities at the contact discontinuity, as the volume element used for the kernel integration. We call this new formulation density independent SPH (DISPH). It handles the contact discontinuity without numerical problems. The results of standard tests such as the shock tube, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, point like explosion, and blob tests are all very favorable to DISPH. We conclude that DISPH solved most of known difficulties of the standard SPH, without introducing additional numerical diffusion or breaking the exact force symmetry or energy conservation. Our new SPH includes the formulation proposed by Ritchie & Thomas (2001) as a special case. Our formulation can be extended to handle a non-ideal gas easily.



قيم البحث

اقرأ أيضاً

At present, the giant impact (GI) is the most widely accepted model for the origin of the Moon. Most of the numerical simulations of GI have been carried out with the smoothed particle hydrodynamics (SPH) method. Recently, however, it has been pointe d out that standard formulation of SPH (SSPH) has difficulties in the treatment of a contact discontinuity such as a core-mantle boundary and a free surface such as a planetary surface. This difficulty comes from the assumption of differentiability of density in SSPH. We have developed an alternative formulation of SPH, density independent SPH (DISPH), which is based on differentiability of pressure instead of density to solve the problem of a contact discontinuity. In this paper, we report the results of the GI simulations with DISPH and compare them with those obtained with SSPH. We found that the disk properties, such as mass and angular momentum produced by DISPH is different from that of SSPH. In general, the disks formed by DISPH are more compact: while formation of a smaller mass moon for low-oblique impacts is expected with DISPH, inhibition of ejection would promote formation of a larger mass moon for high-oblique impacts. Since only the improvement of core-mantle boundary significantly affects the properties of circumplanetary disks generated by GI and DISPH has not been significantly improved from SSPH for a free surface, we should be very careful when some conclusions are drawn from the numerical simulations for GI. And it is necessary to develop the numerical hydrodynamical scheme for GI that can properly treat the free surface as well as the contact discontinuity.
In this paper, we present a new formulation of smoothed particle hydrodynamics (SPH), which, unlike the standard SPH (SSPH), is well-behaved at the contact discontinuity. The SSPH scheme cannot handle discontinuities in density (e.g. the contact disc ontinuity and the free surface), because it requires that the density of fluid is positive and continuous everywhere. Thus there is inconsistency in the formulation of the SSPH scheme at discontinuities of the fluid density. To solve this problem, we introduce a new quantity associated with particles and density of that quantity. This density evolves through the usual continuity equation with an additional artificial diffusion term, in order to guarantee the continuity of density. We use this density or pseudo density, instead of the mass density, to formulate our SPH scheme. We call our new method as SPH with smoothed pseudo-density (SPSPH). We show that our new scheme is physically consistent and can handle discontinuities quite well.
The smoothed particle hydrodynamics (SPH) method is a useful numerical tool for the study of a variety of astrophysical and planetlogical problems. However, it turned out that the standard SPH algorithm has problems in dealing with hydrodynamical ins tabilities. This problem is due to the assumption that the local density distribution is differentiable. In order to solve this problem, a new SPH formulation, which does not require the differentiability of the density, have been proposed. This new SPH method improved the treatment of hydrodynamical instabilities. This method, however, is applicable only to the equation of state (EOS) of the ideal gas. In this paper, we describe how to extend the new SPH method to non-ideal EOS. We present the results of various standard numerical tests for non-ideal EOS. Our new method works well for non-ideal EOS. We conclude that our new SPH can handle hydrodynamical instabilities for an arbitrary EOS and that it is an attractive alternative to the standard SPH.
We present a method for simulating the dynamics of a mixture of gas and multiple species of large Stokes number dust grains, typical of evolved protoplanetary discs and debris discs. The method improves upon earlier methods, in which only a single gr ain size could be represented, by capturing the differential backreaction of multiple dust species on the gas. This effect is greater for large dust-to-gas ratios that may be expected in the later stages of the protoplanetary disc life. We benchmark the method against analytic solutions for linear waves, drag and shocks in dust-gas mixtures, and radial drift in a protoplanetary disc showing that the method is robust and accurate.
92 - R. Wissing , S. Shen , J. Wadsley 2021
We present a thorough numerical study on the MRI using the smoothed particle magnetohydrodynamics method (SPMHD) with the geometric density average force expression (GDSPH). We perform shearing box simulations with different initial setups and a wide range of resolution and dissipation parameters. We show, for the first time, that MRI with sustained turbulence can be simulated successfully with SPH, with results consistent with prior work with grid-based codes. In particular, for the stratified boxes, our simulations reproduce the characteristic butterfly diagram of the MRI dynamo with saturated turbulence for at least 100 orbits. On the contrary, traditional SPH simulations suffer from runaway growth and develop unphysically large azimuthal fields, similar to the results from a recent study with mesh-less methods. We investigated the dependency of MRI turbulence on the numerical Prandtl number in SPH, focusing on the unstratified, zero net-flux case. We found that turbulence can only be sustained with a Prandtl number larger than $sim$2.5, similar to the critical values of physical Prandtl number found in grid-code simulations. However, unlike grid-based codes, the numerical Prandtl number in SPH increases with resolution, and for a fixed Prandtl number, the resulting magnetic energy and stresses are independent of resolution. Mean-field analyses were performed on all simulations, and the resulting transport coefficients indicate no $alpha$-effect in the unstratified cases, but an active $alphaOmega$ dynamo and a diamagnetic pumping effect in the stratified medium, which are generally in agreement with previous studies. There is no clear indication of a shear-current dynamo in our simulation, which is likely to be responsible for a weaker mean-field growth in the tall, unstratified, zero net-flux simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا