ﻻ يوجد ملخص باللغة العربية
Magnetic fields in galaxies and galaxy clusters are amplified from a very weak seed value to the observed $mu{rm G}$ strengths by the turbulent dynamo. The seed magnetic field can be of primordial or astrophysical origin. The strength and structure of the seed field, on the galaxy or galaxy cluster scale, can be very different, depending on the seed-field generation mechanism. The seed field first encounters the small-scale dynamo, thus we investigate the effects of the strength and structure of the seed field on the small-scale dynamo action. Using numerical simulations of driven turbulence and considering three different seed-field configurations: 1) uniform field, 2) random field with a power-law spectrum, and 3) random field with a parabolic spectrum, we show that the strength and statistical properties of the dynamo-generated magnetic fields are independent of the details of the seed field. We demonstrate that, even when the small-scale dynamo is not active, small-scale magnetic fields can be generated and amplified linearly due to the tangling of the large-scale field. In the presence of the small-scale dynamo action, we find that any memory of the seed field for the non-linear small-scale dynamo generated magnetic fields is lost and thus, it is not possible to trace back seed-field information from the evolved magnetic fields in a turbulent medium.
Small-scale dynamo action is often held responsible for the generation of quiet-Sun magnetic fields. We aim to determine the excitation conditions and saturation level of small-scale dynamos in non-rotating turbulent convection at low magnetic Prandt
We demonstrate that a quasi-uniform cosmological seed field is a much less suitable seed for a galactic dynamo than has often been believed. The age of the Universe is insufficient for a conventional galactic dynamo to generate a contemporary galacti
Magnetohydrodynamical (MHD) dynamos emerge in many different astrophysical situations where turbulence is present, but the interaction between large-scale (LSD) and small-scale dynamos (SSD) is not fully understood. We performed a systematic study of
The existence of large-scale dynamos in rigidly rotating turbulent convection without shear is studied using three-dimensional numerical simulations of penetrative rotating compressible convection. We demonstrate that rotating convection in a Cartesi
The study of velocity fields of the hot gas in galaxy clusters can help to unravel details of microphysics on small-scales and to decipher the nature of feedback by active galactic nuclei (AGN). Likewise, magnetic fields as traced by Faraday rotation