ﻻ يوجد ملخص باللغة العربية
In several diagnosis and therapy procedures based on electrostimulation effect, the internal physical quantity related to the stimulation is the induced electric field. To estimate the induced electric field in an individual human model, the segmentation of anatomical imaging, such as (magnetic resonance image (MRI) scans, of the corresponding body parts into tissues is required. Then, electrical properties associated with different annotated tissues are assigned to the digital model to generate a volume conductor. An open question is how segmentation accuracy of different tissues would influence the distribution of the induced electric field. In this study, we applied parametric segmentation of different tissues to exploit the segmentation of available MRI to generate different quality of head models using deep learning neural network architecture, named ForkNet. Then, the induced electric field are compared to assess the effect of model segmentation variations. Computational results indicate that the influence of segmentation error is tissue-dependent. In brain, sensitivity to segmentation accuracy is relatively high in cerebrospinal fluid (CSF), moderate in gray matter (GM) and low in white matter for transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES). A CSF segmentation accuracy reduction of 10% in terms of Dice coefficient (DC) lead to decrease up to 4% in normalized induced electric field in both applications. However, a GM segmentation accuracy reduction of 5.6% DC leads to increase of normalized induced electric field up to 6%. Opposite trend of electric field variation was found between CSF and GM for both TMS and tES. The finding obtained here would be useful to quantify potential uncertainty of computational results.
Neurodegenerative diseases are frequently associated with structural changes in the brain. Magnetic Resonance Imaging (MRI) scans can show these variations and therefore be used as a supportive feature for a number of neurodegenerative diseases. The
Neural network-based approaches can achieve high accuracy in various medical image segmentation tasks. However, they generally require large labelled datasets for supervised learning. Acquiring and manually labelling a large medical dataset is expens
Deep neural networks show high accuracy in theproblem of semantic and instance segmentation of biomedicaldata. However, this approach is computationally expensive. Thecomputational cost may be reduced with network simplificationafter training or choo
This paper explores advanced electrode modeling in the context of separate and parallel transcranial electrical stimulation (tES) and electroencephalography (EEG) measurements. We focus on boundary condition based approaches that do not necessitate a
Gastrointestinal (GI) pathologies are periodically screened, biopsied, and resected using surgical tools. Usually the procedures and the treated or resected areas are not specifically tracked or analysed during or after colonoscopies. Information reg