ترغب بنشر مسار تعليمي؟ اضغط هنا

$L_2$-norm sampling discretization and recovery of functions from RKHS with finite trace

160   0   0.0 ( 0 )
 نشر من قبل Tino Ullrich
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study $L_2$-norm sampling discretization and sampling recovery of complex-valued functions in RKHS on $D subset R^d$ based on random function samples. We only assume the finite trace of the kernel (Hilbert-Schmidt embedding into $L_2$) and provide several concrete estimates with precise constants for the corresponding worst-case errors. In general, our analysis does not need any additional assumptions and also includes the case of non-Mercer kernels and also non-separable RKHS. The fail probability is controlled and decays polynomially in $n$, the number of samples. Under the mild additional assumption of separability we observe improved rates of convergence related to the decay of the singular values. Our main tool is a spectral norm concentration inequality for infinite complex random matrices with independent rows complementing earlier results by Rudelson, Mendelson, Pajor, Oliveira and Rauhut.



قيم البحث

اقرأ أيضاً

We study the recovery of multivariate functions from reproducing kernel Hilbert spaces in the uniform norm. Our main interest is to obtain preasymptotic estimates for the corresponding sampling numbers. We obtain results in terms of the decay of rela ted singular numbers of the compact embedding into $L_2(D,varrho_D)$ multiplied with the supremum of the Christoffel function of the subspace spanned by the first $m$ singular functions. Here the measure $varrho_D$ is at our disposal. As an application we obtain near optimal upper bounds for the sampling numbers for periodic Sobolev type spaces with general smoothness weight. Those can be bounded in terms of the corresponding benchmark approximation number in the uniform norm, which allows for preasymptotic bounds. By applying a recently introduced sub-sampling technique related to Weavers conjecture we mostly lose a $sqrt{log n}$ and sometimes even less. Finally we point out a relation to the corresponding Kolmogorov numbers.
We tensorize the Faber spline system from [14] to prove sequence space isomorphisms for multivariate function spaces with higher mixed regularity. The respective basis coefficients are local linear combinations of discrete function values similar as for the classical Faber Schauder system. This allows for a sparse representation of the function using a truncated series expansion by only storing discrete (finite) set of function values. The set of nodes where the function values are taken depends on the respective function in a non-linear way. Indeed, if we choose the basis functions adaptively it requires significantly less function values to represent the initial function up to accuracy $varepsilon>0$ (say in $L_infty$) compared to hyperbolic cross projections. In addition, due to the higher regularity of the Faber splines we overcome the (mixed) smoothness restriction $r<2$ and benefit from higher mixed regularity of the function. As a byproduct we present the solution of Problem 3.13 in the Triebel monograph [46] for the multivariate setting.
We consider the problem of reconstructing an unknown function $uin L^2(D,mu)$ from its evaluations at given sampling points $x^1,dots,x^min D$, where $Dsubset mathbb R^d$ is a general domain and $mu$ a probability measure. The approximation is picked from a linear space $V_n$ of interest where $n=dim(V_n)$. Recent results have revealed that certain weighted least-squares methods achieve near best approximation with a sampling budget $m$ that is proportional to $n$, up to a logarithmic factor $ln(2n/varepsilon)$, where $varepsilon>0$ is a probability of failure. The sampling points should be picked at random according to a well-chosen probability measure $sigma$ whose density is given by the inverse Christoffel function that depends both on $V_n$ and $mu$. While this approach is greatly facilitated when $D$ and $mu$ have tensor product structure, it becomes problematic for domains $D$ with arbitrary geometry since the optimal measure depends on an orthonormal basis of $V_n$ in $L^2(D,mu)$ which is not explicitly given, even for simple polynomial spaces. Therefore sampling according to this measure is not practically feasible. In this paper, we discuss practical sampling strategies, which amount to using a perturbed measure $widetilde sigma$ that can be computed in an offline stage, not involving the measurement of $u$. We show that near best approximation is attained by the resulting weighted least-squares method at near-optimal sampling budget and we discuss multilevel approaches that preserve optimality of the cumulated sampling budget when the spaces $V_n$ are iteratively enriched. These strategies rely on the knowledge of a-priori upper bounds on the inverse Christoffel function. We establish such bounds for spaces $V_n$ of multivariate algebraic polynomials, and for general domains $D$.
This paper is devoted to the question of constructing a higher order Faber spline basis for the sampling discretization of functions with higher regularity than Lipschitz. The basis constructed in this paper has similar properties as the piecewise li near classical Faber-Schauder basis except for the compactness of the support. Although the new basis functions are supported on the real line they are very well localized (exponentially decaying) and the main parts are concentrated on a segment. This construction gives a complete answer to Problem 3.13 in Triebels monograph (see References [47]) by extending the classical Faber basis to higher orders. Roughly, the crucial idea to obtain a higher order Faber spline basis is to apply Taylors remainder formula to the dual Chui-Wang wavelets. As a first step we explicitly determine these dual wavelets which may be of independent interest. Using this new basis we provide sampling characterizations for Besov and Triebel-Lizorkin spaces and overcome the smoothness restriction coming from the classical piecewise linear Faber-Schauder system. This basis is unconditional and coefficient functionals are computed from discrete function values similar as for the Faber-Schauder situation.
112 - Song Lu , Xianmin Xu 2021
By improving the trace finite element method, we developed another higher-order trace finite element method by integrating on the surface with exact geometry description. This method restricts the finite element space on the volume mesh to the surfac e accurately, and approximates Laplace-Beltrami operator on the surface by calculating the high-order numerical integration on the exact surface directly. We employ this method to calculate the Laplace-Beltrami equation and the Laplace-Beltrami eigenvalue problem. Numerical error analysis shows that this method has an optimal convergence order in both problems. Numerical experiments verify the correctness of the theoretical analysis. The algorithm is more accurate and easier to implement than the existing high-order trace finite element method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا