ﻻ يوجد ملخص باللغة العربية
We tensorize the Faber spline system from [14] to prove sequence space isomorphisms for multivariate function spaces with higher mixed regularity. The respective basis coefficients are local linear combinations of discrete function values similar as for the classical Faber Schauder system. This allows for a sparse representation of the function using a truncated series expansion by only storing discrete (finite) set of function values. The set of nodes where the function values are taken depends on the respective function in a non-linear way. Indeed, if we choose the basis functions adaptively it requires significantly less function values to represent the initial function up to accuracy $varepsilon>0$ (say in $L_infty$) compared to hyperbolic cross projections. In addition, due to the higher regularity of the Faber splines we overcome the (mixed) smoothness restriction $r<2$ and benefit from higher mixed regularity of the function. As a byproduct we present the solution of Problem 3.13 in the Triebel monograph [46] for the multivariate setting.
This paper is devoted to the question of constructing a higher order Faber spline basis for the sampling discretization of functions with higher regularity than Lipschitz. The basis constructed in this paper has similar properties as the piecewise li
In this paper we present results on asymptotic characteristics of multivariate function classes in the uniform norm. Our main interest is the approximation of functions with mixed smoothness parameter not larger than $1/2$. Our focus will be on the b
In this paper we study $L_2$-norm sampling discretization and sampling recovery of complex-valued functions in RKHS on $D subset R^d$ based on random function samples. We only assume the finite trace of the kernel (Hilbert-Schmidt embedding into $L_2
The purpose of this paper is concerned with the approximate solution of split equality problems. We introduce two types of algorithms and a new self-adaptive stepsize without prior knowledge of operator norms. The corresponding strong convergence the
We study the recovery of multivariate functions from reproducing kernel Hilbert spaces in the uniform norm. Our main interest is to obtain preasymptotic estimates for the corresponding sampling numbers. We obtain results in terms of the decay of rela