ترغب بنشر مسار تعليمي؟ اضغط هنا

An Investigation of Spectral Line Stacking Techniques and Application to the Detection of HC$_{11}$N

283   0   0.0 ( 0 )
 نشر من قبل Ryan Loomis
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As the inventory of interstellar molecules continues to grow, the gulf between small species, whose individual rotational lines can be observed with radio telescopes, and large ones, such as polycyclic aromatic hydrocarbons (PAHs) best studied in bulk via infrared and optical observations, is slowly being bridged. Understanding the connection between these two molecular reservoirs is critical to understanding the interstellar carbon cycle, but will require pushing the boundaries of how far we can probe molecular complexity while still retaining observational specificity. Toward this end, we present a method for detecting and characterizing new molecular species in single-dish observations toward sources with sparse line spectra. We have applied this method to data from the ongoing GOTHAM (GBT Observations of TMC-1: Hunting Aromatic Molecules) Green Bank Telescope (GBT) large program, discovering six new interstellar species. In this paper we highlight the detection of HC$_{11}$N, the largest cyanopolyyne in the interstellar medium.



قيم البحث

اقرأ أيضاً

Bell et al. (1997) reported the first detection of the cyanopolyyne HC$_{11}$N toward the cold dark cloud TMC-1; no subsequent detections have been reported toward any source. Additional observations of cyanopolyynes and other carbon-chain molecules toward TMC-1 have shown a log-linear trend between molecule size and column density, and in an effort to further explore the underlying chemical processes driving this trend, we have analyzed GBT observations of HC$_9$N and HC$_{11}$N toward TMC-1. Although we find an HC$_9$N column density consistent with previous values, HC$_{11}$N is not detected and we derive an upper limit column density significantly below that reported in Bell et al. Using a state-of-the-art chemical model, we have investigated possible explanations of non-linearity in the column density trend. Despite updating the chemical model to better account for ion-dipole interactions, we are not able to explain the non-detection of HC$_{11}$N, and we interpret this as evidence of previously unknown carbon-chain chemistry. We propose that cyclization reactions may be responsible for the depleted HC$_{11}$N abundance, and that products of these cyclization reactions should be investigated as candidate interstellar molecules.
We report the first interstellar detection of DC$_7$N and six $^{13}$C-bearing isotopologues of HC$_7$N toward the dark cloud TMC-1 through observations with the Green Bank Telescope, and confirm the recent detection of HC$_5$$^{15}$N. For the averag e of the $^{13}$C isotopomers, DC$_7$N, and HC$_5$$^{15}$N, we derive column densities of 1.9(2)$times$10$^{11}$, 2.5(9)$times$10$^{11}$, and 1.5(4)$times$10$^{11}$ cm$^{-2}$, respectively. The resulting isotopic ratios are consistent with previous values derived from similar species in the source, and we discuss the implications for the formation chemistry of the observed cyanopolyynes. Within our uncertainties, no significant $^{13}$C isotopomer variation is found for HC$_7$N, limiting the significance CN could have in its production. The results further show that, for all observed isotopes, HC$_5$N may be isotopically depleted relative to HC$_3$N and HC$_7$N, suggesting that reactions starting from smaller cyanopolyynes may not be efficient to form HC$_{n}$N. This leads to the conclusion that the dominant production route may be the reaction between hydrocarbon ions and nitrogen atoms.
We report an astronomical detection of HC$_4$NC for the first time in the interstellar medium with the Green Bank Telescope toward the TMC-1 molecular cloud with a minimum significance of $10.5 sigma$. The total column density and excitation temperat ure of HC$_4$NC are determined to be $3.29^{+8.60}_{-1.20}times 10^{11}$ cm$^{-2}$ and $6.7^{+0.3}_{-0.3}$ K, respectively, using the MCMC analysis. In addition to HC$_4$NC, HCCNC is distinctly detected whereas no clear detection of HC$_6$NC is made. We propose that the dissociative recombination of the protonated cyanopolyyne, HC$_5$NH$^+$, and the protonated isocyanopolyyne, HC$_4$NCH$^+$, are the main formation mechanisms for HC$_4$NC while its destruction is dominated by reactions with simple ions and atomic carbon. With the proposed chemical networks, the observed abundances of HC$_4$NC and HCCNC are reproduced satisfactorily.
65 - Simon Ellingsen 2017
We report the detection of maser emission from the $J=4-3$ transition of HC$_3$N at 36.4~GHz towards the nearby starburst galaxy NGC253. This is the first detection of maser emission from this transition in either a Galactic or extragalactic source. The HC$_3$N maser emission has a brightness temperature in excess of 2500 K and is offset from the center of the galaxy by approximately 18 arcsec (300 pc), but close to a previously reported class~I methanol maser. Both the HC$_3$N and methanol masers appear to arise near the interface between the galactic bar and the central molecular zone, where it is thought that molecular gas is being transported inwards, producing a region of extensive low-velocity shocks.
When galaxies merge, the supermassive black holes in their centers may form binaries and, during the process of merger, emit low-frequency gravitational radiation in the process. In this paper we consider the galaxy 3C66B, which was used as the targe t of the first multi-messenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C66B to less than $(1.65pm0.02) times 10^9~{M_odot}$ using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits, and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data to `blind pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا