ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Detection of HC$_{11}$N toward TMC-1: Constraining the Chemistry of Large Carbon-Chain Molecules

69   0   0.0 ( 0 )
 نشر من قبل Ryan Loomis
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bell et al. (1997) reported the first detection of the cyanopolyyne HC$_{11}$N toward the cold dark cloud TMC-1; no subsequent detections have been reported toward any source. Additional observations of cyanopolyynes and other carbon-chain molecules toward TMC-1 have shown a log-linear trend between molecule size and column density, and in an effort to further explore the underlying chemical processes driving this trend, we have analyzed GBT observations of HC$_9$N and HC$_{11}$N toward TMC-1. Although we find an HC$_9$N column density consistent with previous values, HC$_{11}$N is not detected and we derive an upper limit column density significantly below that reported in Bell et al. Using a state-of-the-art chemical model, we have investigated possible explanations of non-linearity in the column density trend. Despite updating the chemical model to better account for ion-dipole interactions, we are not able to explain the non-detection of HC$_{11}$N, and we interpret this as evidence of previously unknown carbon-chain chemistry. We propose that cyclization reactions may be responsible for the depleted HC$_{11}$N abundance, and that products of these cyclization reactions should be investigated as candidate interstellar molecules.

قيم البحث

اقرأ أيضاً

We report the first interstellar detection of DC$_7$N and six $^{13}$C-bearing isotopologues of HC$_7$N toward the dark cloud TMC-1 through observations with the Green Bank Telescope, and confirm the recent detection of HC$_5$$^{15}$N. For the averag e of the $^{13}$C isotopomers, DC$_7$N, and HC$_5$$^{15}$N, we derive column densities of 1.9(2)$times$10$^{11}$, 2.5(9)$times$10$^{11}$, and 1.5(4)$times$10$^{11}$ cm$^{-2}$, respectively. The resulting isotopic ratios are consistent with previous values derived from similar species in the source, and we discuss the implications for the formation chemistry of the observed cyanopolyynes. Within our uncertainties, no significant $^{13}$C isotopomer variation is found for HC$_7$N, limiting the significance CN could have in its production. The results further show that, for all observed isotopes, HC$_5$N may be isotopically depleted relative to HC$_3$N and HC$_7$N, suggesting that reactions starting from smaller cyanopolyynes may not be efficient to form HC$_{n}$N. This leads to the conclusion that the dominant production route may be the reaction between hydrocarbon ions and nitrogen atoms.
We report an astronomical detection of HC$_4$NC for the first time in the interstellar medium with the Green Bank Telescope toward the TMC-1 molecular cloud with a minimum significance of $10.5 sigma$. The total column density and excitation temperat ure of HC$_4$NC are determined to be $3.29^{+8.60}_{-1.20}times 10^{11}$ cm$^{-2}$ and $6.7^{+0.3}_{-0.3}$ K, respectively, using the MCMC analysis. In addition to HC$_4$NC, HCCNC is distinctly detected whereas no clear detection of HC$_6$NC is made. We propose that the dissociative recombination of the protonated cyanopolyyne, HC$_5$NH$^+$, and the protonated isocyanopolyyne, HC$_4$NCH$^+$, are the main formation mechanisms for HC$_4$NC while its destruction is dominated by reactions with simple ions and atomic carbon. With the proposed chemical networks, the observed abundances of HC$_4$NC and HCCNC are reproduced satisfactorily.
(Abridged) We have observed velocity resolved spectra of four ro-vibrational far-infrared transitions of C3 between the vibrational ground state and the low-energy nu2 bending mode at frequencies between 1654--1897 GHz using HIFI on board Herschel, i n DR21(OH), a high mass star forming region. Several transitions of CCH and c-C3H2 have also been observed with HIFI and the IRAM 30m telescope. A gas and grain warm-up model was used to identify the primary C3 forming reactions in DR21(OH). We have detected C3 in absorption in four far-infrared transitions, P(4), P(10), Q(2) and Q(4). The continuum sources MM1 and MM2 in DR21(OH) though spatially unresolved, are sufficiently separated in velocity to be identified in the C3 spectra. All C3 transitions are detected from the embedded source MM2 and the surrounding envelope, whereas only Q(4) & P(4) are detected toward the hot core MM1. The abundance of C3 in the envelope and MM2 is sim6x10^{-10} and sim3x10^{-9} respectively. For CCH and c-C3H2 we only detect emission from the envelope and MM1. The observed CCH, C3, and c-C3H2 abundances are most consistent with a chemical model with n(H2)sim5x10^{6} cm^-3 post-warm-up dust temperature, T_max =30 K and a time of sim0.7-3 Myr. Post warm-up gas phase chemistry of CH4 released from the grain at tsim 0.2 Myr and lasting for 1 Myr can explain the observed C3 abundance in the envelope of DR21(OH) and no mechanism involving photodestruction of PAH molecules is required. The chemistry in the envelope is similar to the warm carbon chain chemistry (WCCC) found in lukewarm corinos. The observed lower C3 abundance in MM1 as compared to MM2 and the envelope could be indicative of destruction of C3 in the more evolved MM1. The timescale for the chemistry derived for the envelope is consistent with the dynamical timescale of 2 Myr derived for DR21(OH) in other studies.
As the inventory of interstellar molecules continues to grow, the gulf between small species, whose individual rotational lines can be observed with radio telescopes, and large ones, such as polycyclic aromatic hydrocarbons (PAHs) best studied in bul k via infrared and optical observations, is slowly being bridged. Understanding the connection between these two molecular reservoirs is critical to understanding the interstellar carbon cycle, but will require pushing the boundaries of how far we can probe molecular complexity while still retaining observational specificity. Toward this end, we present a method for detecting and characterizing new molecular species in single-dish observations toward sources with sparse line spectra. We have applied this method to data from the ongoing GOTHAM (GBT Observations of TMC-1: Hunting Aromatic Molecules) Green Bank Telescope (GBT) large program, discovering six new interstellar species. In this paper we highlight the detection of HC$_{11}$N, the largest cyanopolyyne in the interstellar medium.
We report the first detection in space of the single deuterated isotopologue of methylcyanoacetylene, CH$_2$DC$_3$N. A total of fifteen rotational transitions, with $J$ = 8-12 and $K_a$ = 0 and 1, were identified for this species in TMC-1 in the 31.0 -50.4 GHz range using the Yebes 40m radio telescope. The observed frequencies were used to derive for the first time the spectroscopic parameters of this deuterated isotopologue. We derive a column density of $(8.0pm 0.4) times 10^{10}$ cm$^{-2}$. The abundance ratio between CH$_3$C$_3$N and CH$_2$DC$_3$N is $sim$22. We also theoretically computed the principal spectroscopic constants of $^{13}$C isotopologues of CH$_3$C$_3$N and CH$_3$C$_4$H and those of the deuterated isotopologues of CH$_3$C$_4$H for which we could expect a similar degree of deuteration enhancement. However, we have not detected either CH$_2$DC$_4$H nor CH$_3$C$_4$D nor any $^{13}$C isotopologue. The different observed deuterium ratios in TMC-1 are reasonably accounted for by a gas phase chemical model where the low temperature conditions favor deuteron transfer through reactions with H$_2$D$^+$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا