ترغب بنشر مسار تعليمي؟ اضغط هنا

Technical Design Report for the AMoRE $0 ubetabeta$ Decay Search Experiment

101   0   0.0 ( 0 )
 نشر من قبل Douglas Leonard
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The AMoRE (Advanced Mo-based Rare process Experiment) project is a series of experiments that use advanced cryogenic techniques to search for the neutrinoless double-beta decay of mohundred. The work is being carried out by an international collaboration of researchers from eight countries. These searches involve high precision measurements of radiation-induced temperature changes and scintillation light produced in ultra-pure Mo[100]-enriched and Ca[48]-depleted calcium molybdate ($mathrm{^{48depl}Ca^{100}MoO_4}$) crystals that are located in a deep underground laboratory in Korea. The mohundred nuclide was chosen for this zeronubb decay search because of its high $Q$-value and favorable nuclear matrix element. Tests have demonstrated that camo crystals produce the brightest scintillation light among all of the molybdate crystals, both at room and at cryogenic temperatures. $mathrm{^{48depl}Ca^{100}MoO_4}$ crystals are being operated at milli-Kelvin temperatures and read out via specially developed metallic-magnetic-calorimeter (MMC) temperature sensors that have excellent energy resolution and relatively fast response times. The excellent energy resolution provides good discrimination of signal from backgrounds, and the fast response time is important for minimizing the irreducible background caused by random coincidence of two-neutrino double-beta decay events of mohundred nuclei. Comparisons of the scintillating-light and phonon yields and pulse shape discrimination of the phonon signals will be used to provide redundant rejection of alpha-ray-induced backgrounds. An effective Majorana neutrino mass sensitivity that reaches the expected range of the inverted neutrino mass hierarchy, i.e., 20-50 meV, could be achieved with a 200~kg array of $mathrm{^{48depl}Ca^{100}MoO_4}$ crystals operating for three years.


قيم البحث

اقرأ أيضاً

The GERDA collaboration is performing a search for neutrinoless double beta decay of ^{76}Ge with the eponymous detector. The experiment has been installed and commissioned at the Laboratori Nazionali del Gran Sasso and has started operation in Novem ber 2011. The design, construction and first operational results are described, along with detailed information from the R&D phase.
In this Technical Design Report (TDR) we describe the SuperB detector that was to be installed on the SuperB e+e- high luminosity collider. The SuperB asymmetric collider, which was to be constructed on the Tor Vergata campus near the INFN Frascati N ational Laboratory, was designed to operate both at the Upsilon(4S) center-of-mass energy with a luminosity of 10^{36} cm^{-2}s^{-1} and at the tau/charm production threshold with a luminosity of 10^{35} cm^{-2}s^{-1}. This high luminosity, producing a data sample about a factor 100 larger than present B Factories, would allow investigation of new physics effects in rare decays, CP Violation and Lepton Flavour Violation. This document details the detector design presented in the Conceptual Design Report (CDR) in 2007. The R&D and engineering studies performed to arrive at the full detector design are described, and an updated cost estimate is presented. A combination of a more realistic cost estimates and the unavailability of funds due of the global economic climate led to a formal cancelation of the project on Nov 27, 2012.
The Mu2e experiment at Fermilab will search for charged lepton flavor violation via the coherent conversion process mu- N --> e- N with a sensitivity approximately four orders of magnitude better than the current worlds best limits for this process. The experiments sensitivity offers discovery potential over a wide array of new physics models and probes mass scales well beyond the reach of the LHC. We describe herein the preliminary design of the proposed Mu2e experiment. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2 approval.
184 - T. Abe , I. Adachi , K. Adamczyk 2010
The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a thr ee-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا