ترغب بنشر مسار تعليمي؟ اضغط هنا

Pandora: A Cyber Range Environment for the Safe Testing and Deployment of Autonomous Cyber Attack Tools

61   0   0.0 ( 0 )
 نشر من قبل Ryan K. L. Ko
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cybersecurity tools are increasingly automated with artificial intelligent (AI) capabilities to match the exponential scale of attacks, compensate for the relatively slower rate of training new cybersecurity talents, and improve of the accuracy and performance of both tools and users. However, the safe and appropriate usage of autonomous cyber attack tools - especially at the development stages for these tools - is still largely an unaddressed gap. Our survey of current literature and tools showed that most of the existing cyber range designs are mostly using manual tools and have not considered augmenting automated tools or the potential security issues caused by the tools. In other words, there is still room for a novel cyber range design which allow security researchers to safely deploy autonomous tools and perform automated tool testing if needed. In this paper, we introduce Pandora, a safe testing environment which allows security researchers and cyber range users to perform experiments on automated cyber attack tools that may have strong potential of usage and at the same time, a strong potential for risks. Unlike existing testbeds and cyber ranges which have direct compatibility with enterprise computer systems and the potential for risk propagation across the enterprise network, our test system is intentionally designed to be incompatible with enterprise real-world computing systems to reduce the risk of attack propagation into actual infrastructure. Our design also provides a tool to convert in-development automated cyber attack tools into to executable test binaries for validation and usage realistic enterprise system environments if required. Our experiments tested automated attack tools on our proposed system to validate the usability of our proposed environment. Our experiments also proved the safety of our environment by compatibility testing using simple malicious code.



قيم البحث

اقرأ أيضاً

427 - Li Li , Raed Fayad , Adrian Taylor 2021
Given the success of reinforcement learning (RL) in various domains, it is promising to explore the application of its methods to the development of intelligent and autonomous cyber agents. Enabling this development requires a representative RL train ing environment. To that end, this work presents CyGIL: an experimental testbed of an emulated RL training environment for network cyber operations. CyGIL uses a stateless environment architecture and incorporates the MITRE ATT&CK framework to establish a high fidelity training environment, while presenting a sufficiently abstracted interface to enable RL training. Its comprehensive action space and flexible game design allow the agent training to focus on particular advanced persistent threat (APT) profiles, and to incorporate a broad range of potential threats and vulnerabilities. By striking a balance between fidelity and simplicity, it aims to leverage state of the art RL algorithms for application to real-world cyber defence.
Cyber attacks pose crucial threats to computer system security, and put digital treasuries at excessive risks. This leads to an urgent call for an effective intrusion detection system that can identify the intrusion attacks with high accuracy. It is challenging to classify the intrusion events due to the wide variety of attacks. Furthermore, in a normal network environment, a majority of the connections are initiated by benign behaviors. The class imbalance issue in intrusion detection forces the classifier to be biased toward the majority/benign class, thus leave many attack incidents undetected. Spurred by the success of deep neural networks in computer vision and natural language processing, in this paper, we design a new system named DeepIDEA that takes full advantage of deep learning to enable intrusion detection and classification. To achieve high detection accuracy on imbalanced data, we design a novel attack-sharing loss function that can effectively move the decision boundary towards the attack classes and eliminates the bias towards the majority/benign class. By using this loss function, DeepIDEA respects the fact that the intrusion mis-classification should receive higher penalty than the attack mis-classification. Extensive experimental results on three benchmark datasets demonstrate the high detection accuracy of DeepIDEA. In particular, compared with eight state-of-the-art approaches, DeepIDEA always provides the best class-balanced accuracy.
A framework for the elicitation and debugging of formal specifications for Cyber-Physical Systems is presented. The elicitation of specifications is handled through a graphical interface. Two debugging algorithms are presented. The first checks for e rroneous or incomplete temporal logic specifications without considering the system. The second can be utilized for the analysis of reactive requirements with respect to system test traces. The specification debugging framework is applied on a number of formal specifications collected through a user study. The user study establishes that requirement errors are common and that the debugging framework can resolve many insidious specification errors.
Information sharing is vital in resisting cyberattacks, and the volume and severity of these attacks is increasing very rapidly. Therefore responders must triage incoming warnings in deciding how to act. This study asked a very specific question: how can the addition of confidence information to alerts and warnings improve overall resistance to cyberattacks. We sought, in particular, to identify current practices, and if possible, to identify some best practices. The research involved literature review and interviews with subject matter experts at every level from system administrators to persons who develop broad principles of policy. An innovative Modified Online Delphi Panel technique was used to elicit judgments and recommendations from experts who were able to speak with each other and vote anonymously to rank proposed practices.
While Water Treatment Networks (WTNs) are critical infrastructures for local communities and public health, WTNs are vulnerable to cyber attacks. Effective detection of attacks can defend WTNs against discharging contaminated water, denying access, d estroying equipment, and causing public fear. While there are extensive studies in WTNs attack detection, they only exploit the data characteristics partially to detect cyber attacks. After preliminary exploring the sensing data of WTNs, we find that integrating spatio-temporal knowledge, representation learning, and detection algorithms can improve attack detection accuracy. To this end, we propose a structured anomaly detection framework to defend WTNs by modeling the spatio-temporal characteristics of cyber attacks in WTNs. In particular, we propose a spatio-temporal representation framework specially tailored to cyber attacks after separating the sensing data of WTNs into a sequence of time segments. This framework has two key components. The first component is a temporal embedding module to preserve temporal patterns within a time segment by projecting the time segment of a sensor into a temporal embedding vector. We then construct Spatio-Temporal Graphs (STGs), where a node is a sensor and an attribute is the temporal embedding vector of the sensor, to describe the state of the WTNs. The second component is a spatial embedding module, which learns the final fused embedding of the WTNs from STGs. In addition, we devise an improved one class-SVM model that utilizes a new designed pairwise kernel to detect cyber attacks. The devised pairwise kernel augments the distance between normal and attack patterns in the fused embedding space. Finally, we conducted extensive experimental evaluations with real-world data to demonstrate the effectiveness of our framework.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا