ﻻ يوجد ملخص باللغة العربية
High critical temperature superconductivity often occurs in systems where an antiferromagnetic order is brought near $T=0K$ by slightly modifying pressure or doping. CaKFe$_4$As$_4$ is a superconducting, stoichiometric iron pnictide compound showing optimal superconducting critical temperature with $T_c$ as large as $38$ K. Doping with Ni induces a decrease in $T_c$ and the onset of spin-vortex antiferromagnetic order, which consists of spins pointing inwards to or outwards from alternating As sites on the diagonals of the in-plane square Fe lattice. Here we study the band structure of CaK(Fe$_{0.95}$Ni$_{0.05}$)$_4$As$_4$ (T$_c$ = 10 K, T$_N$ = 50 K) using quasiparticle interference with a Scanning Tunneling Microscope (STM) and show that the spin-vortex order induces a Fermi surface reconstruction and a fourfold superconducting gap anisotropy.
The magnetic response of CaK(Fe$_{0.949}$Ni$_{0.051}$)$_4$As$_4$ was investigated by means of the muon-spin rotation/relaxation. The long-range commensurate magnetic order sets in below the N{e}el temperature $T_{rm N}= 50.0(5)$~K. The density-functi
Temperature dependent $^{57}$Fe Mossbauer spectroscopy and specific heat measurements for CaK(Fe$_{1-x}$Ni$_x$)$_4$As$_4$ with $x$ = 0, 0.017, 0.033, and 0.049 are presented. No magnetic hyperfine field (e.g. no static magnetic order) down to 5.5 K w
We investigate the anisotropic superconducting and magnetic properties of single-crystal RbEuFe$_4$As$_4$ using magnetotransport and magnetization measurements. We determine a magnetic ordering temperature of the Eu-moments of $T_m$ = 15 K and a supe
The intrinsically hole-doped RbEuFe$_4$As$_4$ exhibits bulk superconductivity at $T_{mathrm{sc}}=36.5$ K and ferromagnetic ordering in the Eu sublattice at $T_mathrm{m}=15$ K. Here we present a hole-compensation study by introducing extra itinerant e
We find evidence that the newly discovered Fe-based superconductor KCa$_2$Fe$_4$As$_4$F$_2$ ($T_c~=~33.36(7)$~K) displays multigap superconductivity with line nodes. Transverse field muon spin rotation ($mu$SR) measurements show that the temperature