ترغب بنشر مسار تعليمي؟ اضغط هنا

Coexistence of superconductivity and magnetism in CaK(Fe$_{1-x}$Ni$_x$)$_4$As$_4$ as probed by $^{57}$Fe Mossbauer spectroscopy

287   0   0.0 ( 0 )
 نشر من قبل S. L. Bud'ko
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Temperature dependent $^{57}$Fe Mossbauer spectroscopy and specific heat measurements for CaK(Fe$_{1-x}$Ni$_x$)$_4$As$_4$ with $x$ = 0, 0.017, 0.033, and 0.049 are presented. No magnetic hyperfine field (e.g. no static magnetic order) down to 5.5 K was detected for $x$ = 0 and 0.017 in agreement with the absence of any additional feature below superconducting transition temperature, $T_c$, in the specific heat data. The evolution of magnetic hyperfine field with temperature was studied for $x$ = 0.033 and 0.049. The long-range magnetic order in these two compounds coexists with superconductivity. The magnetic hyperfine field, $B_{hf}$, (ordered magnetic moment) below $T_c$ in CaK(Fe$_{0.967}$Ni$_{0.033}$)$_4$As$_4$ is continuously suppressed with the developing superconducting order parameter. The $B_{hf}(T)$ data for CaK(Fe$_{0.967}$Ni$_{0.033}$)$_4$As$_4$, and CaK(Fe$_{0.951}$Ni$_{0.049}$)$_4$As$_4$ can be described reasonably well by Machidas model for coexistence of itinerant spin density wave magnetism and superconductivity [K. Machida, J. Phys. Soc. Jpn. {bf 50}, 2195 (1981)]. We demonstrate directly that superconductivity suppresses the spin density wave order parameter if the conditions are right, in agreement with the theoretical analysis.



قيم البحث

اقرأ أيضاً

The magnetic response of CaK(Fe$_{0.949}$Ni$_{0.051}$)$_4$As$_4$ was investigated by means of the muon-spin rotation/relaxation. The long-range commensurate magnetic order sets in below the N{e}el temperature $T_{rm N}= 50.0(5)$~K. The density-functi onal theory calculations have identified three possible muon stopping sites. The experimental data were found to be consistent with only one type of magnetic structure, namely, the long-range magnetic spin-vortex-crystal order with the hedgehog motif within the $ab-$plane and the antiferromagnetic stacking along the $c-$direction. The value of the ordered magnetic moment at $Tapprox3$ K was estimated to be $m_{rm Fe}=0.38(11)$ $mu_{rm B}$ ($mu_{rm B}$ is the Bohr magneton). A microscopic coexistence of magnetic and superconducting phases accompanied by a reduction of the magnetic order parameter below the superconducting transition temperature $T_{rm c}simeq 9$ K is observed. Comparison with 11, 122, and 1144 families of Fe-based pnictides points to existence of correlation between the reduction of the magnetic order parameter at $Trightarrow 0$ and the ratio of the transition temperatures $T_{rm c}/T_{rm N}$. Such correlations were found to be described by Machidas model for coexistence of itinerant spin-density wave magnetism and superconductivity [Machida, J. Phys. Soc. Jpn. 50, 2195 (1981) and Budko et al., Phys. Rev. B 98, 144520 (2018)].
We present our results of a local probe study on EuFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ single crystals with $x$=0.13, 0.19 and 0.28 by means of muon spin rotation and ${}^{57}$Fe Mossbauer spectroscopy. We focus our discussion on the sample with $x$=0. 19 viz. at the optimal substitution level, where bulk superconductivity ($T_{text{SC}}=28$ K) sets in above static europium order ($T^{text{Eu}}=20$K) but well below the onset of the iron antiferromagnetic (AFM) transition ($sim$100 K). We find enhanced spin dynamics in the Fe sublattice closely above $T_{text{SC}}$ and propose that these are related to enhanced Eu fluctuations due to the evident coupling of both sublattices observed in our experiments.
288 - Yi Liu , Ya-Bin Liu , Ya-Long Yu 2017
The intrinsically hole-doped RbEuFe$_4$As$_4$ exhibits bulk superconductivity at $T_{mathrm{sc}}=36.5$ K and ferromagnetic ordering in the Eu sublattice at $T_mathrm{m}=15$ K. Here we present a hole-compensation study by introducing extra itinerant e lectrons via a Ni substitution in the ferromagnetic superconductor RbEuFe$_4$As$_4$ with $T_{mathrm{sc}}>T_{mathrm{m}}$. With the Ni doping, $T_{mathrm{sc}}$ decreases rapidly, and the Eu-spin ferromagnetism and its $T_{mathrm{m}}$ remain unchanged. Consequently, the system RbEu(Fe$_{1-x}$Ni$_x$)$_4$As$_4$ transforms into a superconducting ferromagnet with $T_{mathrm{m}}>T_{mathrm{sc}}$ for $0.07leq xleq0.08$. The occurrence of superconducting ferromagnets is attributed to the decoupling between Eu$^{2+}$ spins and superconducting Cooper pairs. The superconducting and magnetic phase diagram is established, which additionally includes a recovered yet suppressed spin-density-wave state.
High critical temperature superconductivity often occurs in systems where an antiferromagnetic order is brought near $T=0K$ by slightly modifying pressure or doping. CaKFe$_4$As$_4$ is a superconducting, stoichiometric iron pnictide compound showing optimal superconducting critical temperature with $T_c$ as large as $38$ K. Doping with Ni induces a decrease in $T_c$ and the onset of spin-vortex antiferromagnetic order, which consists of spins pointing inwards to or outwards from alternating As sites on the diagonals of the in-plane square Fe lattice. Here we study the band structure of CaK(Fe$_{0.95}$Ni$_{0.05}$)$_4$As$_4$ (T$_c$ = 10 K, T$_N$ = 50 K) using quasiparticle interference with a Scanning Tunneling Microscope (STM) and show that the spin-vortex order induces a Fermi surface reconstruction and a fourfold superconducting gap anisotropy.
264 - Ya-Bin Liu , Yi Liu , Wen-He Jiao 2018
We report Eu-local-spin magnetism and Ni-doping-induced superconductivity (SC) in a 112-type ferroarsenide system Eu(Fe$_{1-x}$Ni$_{x}$)As$_2$. The non-doped EuFeAs$_2$ exhibits two primary magnetic transitions at $sim$100 and $sim$ 40 K, probably as sociated with a spin-density-wave (SDW) transition and an antiferromagnetic ordering in the Fe and Eu sublattices, respectively. Two additional successive transitions possibly related to Eu-spin modulations appear at 15.5 and 6.5 K. For the Ni-doped sample with $x$ = 0.04, the SDW transition disappears, and SC emerges at $T_mathrm{c}$ = 17.5 K. The Eu-spin ordering remains at around 40 K, followed by the possible reentrant magnetic modulations with enhanced spin canting. Consequently, SC coexists with a weak spontaneous magnetization below 6.2 K in Eu(Fe$_{0.96}$Ni$_{0.04}$)As$_2$, which provides a complementary playground for the study of the interplay between SC and magnetism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا