ترغب بنشر مسار تعليمي؟ اضغط هنا

Harnessing Multilinguality in Unsupervised Machine Translation for Rare Languages

297   0   0.0 ( 0 )
 نشر من قبل Xavier Garcia
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Unsupervised translation has reached impressive performance on resource-rich language pairs such as English-French and English-German. However, early studies have shown that in more realistic settings involving low-resource, rare languages, unsupervised translation performs poorly, achieving less than 3.0 BLEU. In this work, we show that multilinguality is critical to making unsupervised systems practical for low-resource settings. In particular, we present a single model for 5 low-resource languages (Gujarati, Kazakh, Nepali, Sinhala, and Turkish) to and from English directions, which leverages monolingual and auxiliary parallel data from other high-resource language pairs via a three-stage training scheme. We outperform all current state-of-the-art unsupervised baselines for these languages, achieving gains of up to 14.4 BLEU. Additionally, we outperform a large collection of supervised WMT submissions for various language pairs as well as match the performance of the current state-of-the-art supervised model for Nepali-English. We conduct a series of ablation studies to establish the robustness of our model under different degrees of data quality, as well as to analyze the factors which led to the superior performance of the proposed approach over traditional unsupervised models.



قيم البحث

اقرأ أيضاً

Unsupervised neural machine translation (UNMT) is beneficial especially for low resource languages such as those from the Dravidian family. However, UNMT systems tend to fail in realistic scenarios involving actual low resource languages. Recent work s propose to utilize auxiliary parallel data and have achieved state-of-the-art results. In this work, we focus on unsupervised translation between English and Kannada, a low resource Dravidian language. We additionally utilize a limited amount of auxiliary data between English and other related Dravidian languages. We show that unifying the writing systems is essential in unsupervised translation between the Dravidian languages. We explore several model architectures that use the auxiliary data in order to maximize knowledge sharing and enable UNMT for distant language pairs. Our experiments demonstrate that it is crucial to include auxiliary languages that are similar to our focal language, Kannada. Furthermore, we propose a metric to measure language similarity and show that it serves as a good indicator for selecting the auxiliary languages.
For most language combinations, parallel data is either scarce or simply unavailable. To address this, unsupervised machine translation (UMT) exploits large amounts of monolingual data by using synthetic data generation techniques such as back-transl ation and noising, while self-supervised NMT (SSNMT) identifies parallel sentences in smaller comparable data and trains on them. To date, the inclusion of UMT data generation techniques in SSNMT has not been investigated. We show that including UMT techniques into SSNMT significantly outperforms SSNMT and UMT on all tested language pairs, with improvements of up to +4.3 BLEU, +50.8 BLEU, +51.5 over SSNMT, statistical UMT and hybrid UMT, respectively, on Afrikaans to English. We further show that the combination of multilingual denoising autoencoding, SSNMT with backtranslation and bilingual finetuning enables us to learn machine translation even for distant language pairs for which only small amounts of monolingual data are available, e.g. yielding BLEU scores of 11.6 (English to Swahili).
A large number of significant assets are available online in English, which is frequently translated into native languages to ease the information sharing among local people who are not much familiar with English. However, manual translation is a ver y tedious, costly, and time-taking process. To this end, machine translation is an effective approach to convert text to a different language without any human involvement. Neural machine translation (NMT) is one of the most proficient translation techniques amongst all existing machine translation systems. In this paper, we have applied NMT on two of the most morphological rich Indian languages, i.e. English-Tamil and English-Malayalam. We proposed a novel NMT model using Multihead self-attention along with pre-trained Byte-Pair-Encoded (BPE) and MultiBPE embeddings to develop an efficient translation system that overcomes the OOV (Out Of Vocabulary) problem for low resourced morphological rich Indian languages which do not have much translation available online. We also collected corpus from different sources, addressed the issues with these publicly available data and refined them for further uses. We used the BLEU score for evaluating our system performance. Experimental results and survey confirmed that our proposed translator (24.34 and 9.78 BLEU score) outperforms Google translator (9.40 and 5.94 BLEU score) respectively.
Paraphrases, the rewordings of the same semantic meaning, are useful for improving generalization and translation. However, prior works only explore paraphrases at the word or phrase level, not at the sentence or corpus level. Unlike previous works t hat only explore paraphrases at the word or phrase level, we use different translations of the whole training data that are consistent in structure as paraphrases at the corpus level. We train on parallel paraphrases in multiple languages from various sources. We treat paraphrases as foreign languages, tag source sentences with paraphrase labels, and train on parallel paraphrases in the style of multilingual Neural Machine Translation (NMT). Our multi-paraphrase NMT that trains only on two languages outperforms the multilingual baselines. Adding paraphrases improves the rare word translation and increases entropy and diversity in lexical choice. Adding the source paraphrases boosts performance better than adding the target ones. Combining both the source and the target paraphrases lifts performance further; combining paraphrases with multilingual data helps but has mixed performance. We achieve a BLEU score of 57.2 for French-to-English translation using 24 corpus-level paraphrases of the Bible, which outperforms the multilingual baselines and is +34.7 above the single-source single-target NMT baseline.
Unsupervised neural machine translation (UNMT) has recently achieved remarkable results for several language pairs. However, it can only translate between a single language pair and cannot produce translation results for multiple language pairs at th e same time. That is, research on multilingual UNMT has been limited. In this paper, we empirically introduce a simple method to translate between thirteen languages using a single encoder and a single decoder, making use of multilingual data to improve UNMT for all language pairs. On the basis of the empirical findings, we propose two knowledge distillation methods to further enhance multilingual UNMT performance. Our experiments on a dataset with English translated to and from twelve other languages (including three language families and six language branches) show remarkable results, surpassing strong unsupervised individual baselines while achieving promising performance between non-English language pairs in zero-shot translation scenarios and alleviating poor performance in low-resource language pairs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا