ترغب بنشر مسار تعليمي؟ اضغط هنا

The Evolution of the Baryons Associated with Galaxies Averaged over Cosmic Time and Space

68   0   0.0 ( 0 )
 نشر من قبل Fabian Walter
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We combine the recent determination of the evolution of the cosmic density of molecular gas (H_2) using deep, volumetric surveys, with previous estimates of the cosmic density of stellar mass, star formation rate and atomic gas (HI), to constrain the evolution of baryons associated with galaxies averaged over cosmic time and space. The cosmic HI and H_2 densities are roughly equal at z~1.5. The H_2 density then decreases by a factor 6^{+3}_{-2} to todays value, whereas the HI density stays approximately constant. The stellar mass density is increasing continuously with time and surpasses that of the total gas density (HI and H_2) at redshift z~1.5. The growth in stellar mass cannot be accounted for by the decrease in cosmic H_2 density, necessitating significant accretion of additional gas onto galaxies. With the new H_2 constraints, we postulate and put observational constraints on a two step gas accretion process: (i) a net infall of ionized gas from the intergalactic/circumgalactic medium to refuel the extended HI reservoirs, and (ii) a net inflow of HI and subsequent conversion to H_2 in the galaxy centers. Both the infall and inflow rate densities have decreased by almost an order of magnitude since z~2. Assuming that the current trends continue, the cosmic molecular gas density will further decrease by about a factor of two over the next 5 Gyr, the stellar mass will increase by approximately 10%, and cosmic star formation activity will decline steadily toward zero, as the gas infall and accretion shut down.



قيم البحث

اقرأ أيضاً

247 - G. Martin 2020
Dwarf galaxies (M*<10^9 Msun) are key drivers of mass assembly in high mass galaxies, but relatively little is understood about the assembly of dwarf galaxies themselves. Using the textsc{NewHorizon} cosmological simulation (40 pc spatial resolution) , we investigate how mergers and fly-bys drive the mass assembly and structural evolution of around 1000 field and group dwarfs up to z=0.5. We find that, while dwarf galaxies often exhibit disturbed morphologies (5 and 20 per cent are disturbed at z=1 and z=3 respectively), only a small proportion of the morphological disturbances seen in dwarf galaxies are driven by mergers at any redshift (for 10^9 Msun, mergers drive only 20 per cent morphological disturbances). They are instead primarily the result of interactions that do not end in a merger (e.g. fly-bys). Given the large fraction of apparently morphologically disturbed dwarf galaxies which are not, in fact, merging, this finding is particularly important to future studies identifying dwarf mergers and post-mergers morphologically at intermediate and high redshifts. Dwarfs typically undergo one major and one minor merger between z=5 and z=0.5, accounting for 10 per cent of their total stellar mass. Mergers can also drive moderate star formation enhancements at lower redshifts (3 or 4 times at z=1), but this accounts for only a few per cent of stellar mass in the dwarf regime given their infrequency. Non-merger interactions drive significantly smaller star formation enhancements (around two times), but their preponderance relative to mergers means they account for around 10 per cent of stellar mass formed in the dwarf regime.
133 - Ignacio Trujillo 2012
Once understood as the paradigm of passively evolving objects, the discovery that massive galaxies experienced an enormous structural evolution in the last ten billion years has opened an active line of research. The most significant pending question in this field is the following: which mechanism has made galaxies to grow largely in size without altering their stellar populations properties dramatically? The most viable explanation is that massive galaxies have undergone a significant number of minor mergers which have deposited most of their material in the outer regions of the massive galaxies. This scenario, although appealing, is still far from be observationally proved since the number of satellite galaxies surrounding the massive objects appears insufficient at all redshifts. The presence also of a population of nearby massive compact galaxies with mixture stellar properties is another piece of the puzzle that still does not nicely fit within a comprehensive scheme. I will review these and other intriguing properties of the massive galaxies in this contribution.
We present predictions for the evolution of radio emission from Active Galactic Nuclei (AGNs). We use a model that follows the evolution of Supermassive Black Hole (SMBH) masses and spins, within the latest version of the GALFORM semi-analytic model of galaxy formation. We use a Blandford-Znajek type model to calculate the power of the relativistic jets produced by black hole accretion discs, and a scaling model to calculate radio luminosities. First, we present the predicted evolution of the jet power distribution, finding that this is dominated by objects fuelled by hot halo accretion and an ADAF accretion state for jet powers above $10^{32}mathrm{W}$ at $z=0$, with the contribution from objects fuelled by starbursts and in a thin disc accretion state being more important for lower jet powers at $z=0$ and at all jet powers at high redshifts ($zgeq3$). We then present the evolution of the jet power density from the model. The model is consistent with current observational estimates of jet powers from radio luminosities, once we allow for the significant uncertainties in these observational estimates. Next, we calibrate the model for radio emission to a range of observational estimates of the $z=0$ radio luminosity function. We compare the evolution of the model radio luminosity function to observational estimates for $0<z<6$, finding that the predicted evolution is similar to that observed. Finally, we explore recalibrating the model to reproduce luminosity functions of core radio emission, finding that the model is in approximate agreement with the observations.
Context. Galactic structure studies can be used as a path to constrain the scenario of formation and evolution of our Galaxy. The dependence with the age of stellar population parameters would be linked with the history of star formation and dynamica l evolution. Aims. We aim to investigate the structures of the outer Galaxy, such as the scale length, disc truncation, warp and flare of the thin disc and study their dependence with age by using 2MASS data and a population synthesis model (the so-called Besanc{c}on Galaxy Model). Methods. We have used a genetic algorithm to adjust the parameters on the observed colour-magnitude diagrams at longitudes 80 deg <= l <= 280 deg for |b| <= 5.5 deg. We explored parameter degeneracies and uncertainties. Results. We identify a clear dependence of the thin disc scale length, warp and flare shapes with age. The scale length is found to vary between 3.8 kpc for the youngest to about 2 kpc for the oldest. The warp shows a complex structure, clearly asymmetrical with a node angle changing with age from approximately 165 deg for old stars to 195 deg for young stars. The outer disc is also flaring with a scale height that varies by a factor of two between the solar neighbourhood and a Galactocentric distance of 12 kpc. Conclusions. We conclude that the thin disc scale length is in good agreement with the inside-out formation scenario and that the outer disc is not in dynamical equilibrium. The warp deformation with time may provide some clues to its origin.
We present new results on the frequency distribution of projected HI column densities f(N,X), total comoving covering fraction, and integrated mass densities rho_HI of high redshift, HI `disks from a survey of damped Lya systems (DLAs) in the Sloan D igital Sky Survey, Data Release 5. For the full sample spanning z=2.2 to 5 [738 DLAs], f(N,X) is well fitted by a double power-law with a break column density N_d = 10^(21.55 +/- 0.04) and low/high-end exponents alpha = -2.00 +/- 0.05, -6.4^{+1.1}_{-1.6}. The shape of f(N,X) is invariant during this redshift interval and also follows the projected surface density distribution of present-day HI disks as inferred from 21cm observations. We conclude that HI gas has been distributed in a self-similar fashion for the past 12Gyr. The normalization of f(N,X), in contrast, decreases by a factor of two during the ~2Gyr interval from z=4 to 2.2 giving corresponding decreases in both the total covering fraction and rho_HI. At z~2, these quantities match the present-day values suggesting no evolution during the past ~10Gyr. We argue that the evolution at early times is driven by `violent processes that removes gas from nearly half the galaxies at z~3 establishing the antecedants of current early-type galaxies. The perceived constancy of rho_HI, meanwhile, implies that HI gas is a necessary but insufficient pre-condition for star formation and that the global star-formation rate is driven by the accretion and condensation of fresh gas from the intergalactic medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا