ﻻ يوجد ملخص باللغة العربية
Context. Galactic structure studies can be used as a path to constrain the scenario of formation and evolution of our Galaxy. The dependence with the age of stellar population parameters would be linked with the history of star formation and dynamical evolution. Aims. We aim to investigate the structures of the outer Galaxy, such as the scale length, disc truncation, warp and flare of the thin disc and study their dependence with age by using 2MASS data and a population synthesis model (the so-called Besanc{c}on Galaxy Model). Methods. We have used a genetic algorithm to adjust the parameters on the observed colour-magnitude diagrams at longitudes 80 deg <= l <= 280 deg for |b| <= 5.5 deg. We explored parameter degeneracies and uncertainties. Results. We identify a clear dependence of the thin disc scale length, warp and flare shapes with age. The scale length is found to vary between 3.8 kpc for the youngest to about 2 kpc for the oldest. The warp shows a complex structure, clearly asymmetrical with a node angle changing with age from approximately 165 deg for old stars to 195 deg for young stars. The outer disc is also flaring with a scale height that varies by a factor of two between the solar neighbourhood and a Galactocentric distance of 12 kpc. Conclusions. We conclude that the thin disc scale length is in good agreement with the inside-out formation scenario and that the outer disc is not in dynamical equilibrium. The warp deformation with time may provide some clues to its origin.
We study the evolution of oxygen abundance radial gradients as a function of time for the Milky Way Galaxy obtained with our {sc Mulchem} chemical evolution model. We review the recent data of abundances for different objects observed in our Galactic
The Milky Way is expected to host an accreted disc of stars and dark matter. This forms as massive >1:10 mergers are preferentially dragged towards the disc plane by dynamical friction and then tidally shredded. The accreted disc likely contributes o
The nuclear stellar disc (NSD) is a flattened stellar structure that dominates the gravitational potential of the Milky Way at Galactocentric radii $30 lesssim R lesssim 300{, rm pc}$. In this paper, we construct axisymmetric Jeans dynamical models o
We use $N$-body simulations to investigate the excitation of bending waves in a Milky Way-like disc-bulge-halo system. The dark matter halo consists of a smooth component and a population of subhaloes while the disc is composed of thin and thick comp
We employ the first two years of data from the near-infrared, high-resolution SDSS-III/APOGEE spectroscopic survey to investigate the distribution of metallicity and alpha-element abundances of stars over a large part of the Milky Way disk. Using a s