ﻻ يوجد ملخص باللغة العربية
Given a right ideal $I$ in a ring $R$, the idealizer of $I$ in $R$ is the largest subring of $R$ in which $I$ becomes a two-sided ideal. In this paper we consider idealizers in the second Weyl algebra $A_2$, which is the ring of differential operators on $mathbb{k}[x,y]$ (in characteristic $0$). Specifically, let $f$ be a polynomial in $x$ and $y$ which defines an irreducible curve whose singularities are all cusps. We show that the idealizer of the right ideal $fA_2$ in $A_2$ is always left and right noetherian, extending the work of McCaffrey.
Let A denote the ring of differential operators on the affine line with its two usual generators t and d/dt given degrees +1 and -1 respectively. Let X be the stack having coarse moduli space the affine line Spec k[z] and isotropy groups Z/2 at each
Given a grading $Gamma: A=oplus_{gin G}A_g$ on a nonassociative algebra $A$ by an abelian group $G$, we have two subgroups of the group of automorphisms of $A$: the automorphisms that stabilize each homogeneous component $A_g$ (as a subspace) and the
This paper studies commuting matrices in max algebra and nonnegative linear algebra. Our starting point is the existence of a common eigenvector, which directly leads to max analogues of some classical results for complex matrices. We also investigat
Evolution algebras are non-associative algebras that describe non-Mendelian hereditary processes and have connections with many other areas. In this paper we obtain necessary and sufficient conditions for a given algebra $A$ to be an evolution algebr
A bilinear form on a possibly graded vector space $V$ defines a graded Poisson structure on its graded symmetric algebra together with a star product quantizing it. This gives a model for the Weyl algebra in an algebraic framework, only requiring a f