ﻻ يوجد ملخص باللغة العربية
This paper studies commuting matrices in max algebra and nonnegative linear algebra. Our starting point is the existence of a common eigenvector, which directly leads to max analogues of some classical results for complex matrices. We also investigate Frobenius normal forms of commuting matrices, particularly when the Perron roots of the components are distinct. For the case of max algebra, we show how the intersection of eigencones of commuting matrices can be described, and we consider connections with Boolean algebra which enables us to prove that two commuting irreducible matrices in max algebra have a common eigennode.
We identify the dimension of the centralizer of the symmetric group $mathfrak{S}_d$ in the partition algebra $mathcal{A}_d(delta)$ and in the Brauer algebra $mathcal{B}_d(delta)$ with the number of multidigraphs with $d$ arrows and the number of disj
Riordan matrices are infinite lower triangular matrices determined by a pair of formal power series over the real or complex field. These matrices have been mainly studied as combinatorial objects with an emphasis placed on the algebraic or combinato
The set of associative and commutative hypercomplex numbers, called the perfect hypercomplex algebra (PHA) is investigated. Necessary and sufficient conditions for an algebra to be a PHA via semi-tensor product(STP) of matrices are reviewed. The zero
Max-plus algebra is a kind of idempotent semiring over $mathbb{R}_{max}:=mathbb{R}cup{-infty}$ with two operations $oplus := max$ and $otimes := +$.In this paper, we introduce a new model of a walk on one dimensional lattice on $mathbb{Z}$, as an ana
Evolution algebras are non-associative algebras that describe non-Mendelian hereditary processes and have connections with many other areas. In this paper we obtain necessary and sufficient conditions for a given algebra $A$ to be an evolution algebr