ﻻ يوجد ملخص باللغة العربية
A double cavity with a quantum mechanical and a classical field is located immediately behind of a double-slit in order to analyse the wave-particle duality. Both fields have common nodes and antinodes through which a three-level atom passes after crossing the double-slit. The atom-field interaction is maximum when the atom crosses a common antinode and path-information can be recorded on the phase of the quantum field. On other hand, if the atom crosses a common node, the interaction is null and no path-information is stored. A quadrature measurement on the quantum field can reveal the path followed by the atom, depending on its initial amplitude $alpha$ and the classical amplitude $varepsilon$. In this report we show that the classical radiation acts like a focusing element of the interference and diffraction patterns and how it alters the visibility and distinguishabilily. Furthermore, in our double-slit scheme the two possible paths are correlated with the internal atomic states, which allows us to study the relationship between concurrence and wave-particle duality considering different cases.
We analyze a scheme for controlling coherent photon absorption by cavity electromagnetically induced transparency (EIT) in a three-level atom-cavity system. Coherent perfect absorption (CPA) can occur when time-reversed symmetry of lasing process is
We resolve phonon number states in the spectrum of a superconducting qubit coupled to a multimode acoustic cavity. Crucial to this resolution is the sharp frequency dependence in the qubit-phonon interaction engineered by coupling the qubit to surfac
In classical optics, Youngs double-slit experiment with colored coherent light gives rise to individual interference fringes for each light frequency, referring to single-photon interference. However, two-photon double-slit interference has been wide
We study the interaction of a two-level atom and two fields, one of them classical. We obtain an effective Hamiltonian for this system by using a method recently introduced that produces a small rotation to the Hamiltonian that allows to neglect some
Even 100 years after its introduction by Louis de Broglie, the wave-nature of matter is often regarded as a mind-boggling phenomenon. To give an intuitive introduction to this field, we here discuss the diffraction of massive molecules through a sing