ترغب بنشر مسار تعليمي؟ اضغط هنا

The Swift Bulge Survey: Motivation, Strategy, and First X-ray Results

119   0   0.0 ( 0 )
 نشر من قبل Arash Bahramian
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Very faint X-ray transients (VFXTs) are X-ray transients with peak X-ray luminosities ($L_X$) of $L_Xlesssim10^{36}$ erg/s, which are not well-understood. We carried out a survey of 16 square degrees of the Galactic Bulge with the Swift Observatory, using short (60 s) exposures, and returning every 2 weeks for 19 epochs in 2017-18 (with a gap from November 2017 to February 2018, when the Bulge was in sun-constraint). Our main goal was to detect and study VFXT behaviour in the Galactic Bulge across various classes of X-ray sources. In this work, we explain the observing strategy of the survey, compare our results with the expected number of source detections per class, and discuss the constraints from our survey on the Galactic VFXT population. We detected 91 X-ray sources, 25 of which have clearly varied by a factor of at least 10. 45 of these X-ray sources have known counterparts: 17 chromospherically active stars, 12 X-ray binaries, 5 cataclysmic variables (and 4 candidates), 3 symbiotic systems, 2 radio pulsars, 1 AGN, and a young star cluster. The other 46 are of previously undetermined nature. We utilize X-ray hardness ratios, searches for optical/infrared counterparts in published catalogs, and flux ratios from quiescence to outburst to constrain the nature of the unknown sources. Of these 46, 7 are newly discovered hard transients, which are likely VFXT X-ray binaries. Furthermore, we find strong new evidence for a symbiotic nature of 4 sources in our full sample, and new evidence for accretion power in 6 X-ray sources with optical counterparts. Our findings indicate that a large subset of VXFTs is likely made up of symbiotic systems.

قيم البحث

اقرأ أيضاً

63 - P. Romano , G. Cusumano 2009
Swift has allowed the possibility to give Supergiant Fast X-ray Transients (SFXTs), the new class of High Mass X-ray Binaries discovered by INTEGRAL, non serendipitous attention throughout all phases of their life. We present our results based on the first year of intense Swift monitoring of four SFXTs, IGR J16479-4514, XTE J1739-302, IGR J17544-2619 and AX J1841.0-0536. We obtain the first assessment of how long each source spends in each state using a systematic monitoring with a sensitive instrument. The duty-cycle of inactivity is 17, 28, 39, 55% (5% uncertainty), for IGR J16479-4514, AX J1841.0-0536, XTE J1739-302, and IGR J17544-2619, respectively, so that true quiescence is a rare state. This demonstrates that these transients accrete matter throughout their life at different rates. AX J1841.0-0536 is the only source which has not undergone a bright outburst during our campaign. Although individual sources behave somewhat differently, common X-ray characteristics of this class are emerging such as outburst lengths well in excess of hours, with a multiple peaked structure. A high dynamic range (including bright outbursts) of 4 orders of magnitude has been observed. We performed out-of-outburst intensity-based spectroscopy. Spectral fits with an absorbed blackbody always result in blackbody radii of a few hundred meters, consistent with being emitted from a small portion of the neutron star surface, very likely the neutron star polar caps. We also present the UVOT data of these sources. (Abridged)
We introduce the Galactic Bulge Survey (GBS) and we provide the Chandra source list for the region that has been observed to date. Among the goals of the GBS are constraining the neutron star equation of state and the black hole mass distribution via the identification of eclipsing neutron star and black hole low-mass X-ray binaries. The latter goal will, in addition, be obtained by significantly enlarging the number of black hole systems for which a black hole mass can be derived. Further goals include constraining X-ray binary formation scenarios, in particular the common envelope phase and the occurrence of kicks, via source-type number counts and an investigation of the spatial distribution of X-ray binaries, respectively. The GBS targets two strips of 6x1 degrees (12 square degrees in total), one above (1<b<2 degrees) and one below (-2<b<-1 degrees) the Galactic plane in the direction of the Galactic Center at both X-ray and optical wavelengths. By avoiding the Galactic plane (-1<b<1 degrees) we limit the influence of extinction on the X-ray and optical emission but still sample relatively large number densities of sources. The survey is designed such that a large fraction of the X-ray sources can be identified from their optical spectra. The X-ray survey, by design, covers a large area on the sky while the depth is shallow using 2 ks per Chandra pointing. In this way we maximize the predicted number ratio of (quiescent) low-mass X-ray binaries to Cataclysmic Variables. The survey is approximately homogeneous in depth to an 0.5-10 keV flux of 7.7x10^-14 erg cm-2 s-1. So far, we have covered about two-thirds (8.3 square degrees) of the projected survey area with Chandra providing over 1200 unique X-ray sources. We discuss the characteristics and the variability of the brightest of these sources.
The Foundation Supernova Survey aims to provide a large, high-fidelity, homogeneous, and precisely-calibrated low-redshift Type Ia supernova (SN Ia) sample for cosmology. The calibration of the current low-redshift SN sample is the largest component of systematic uncertainties for SN cosmology, and new data are necessary to make progress. We present the motivation, survey design, observation strategy, implementation, and first results for the Foundation Supernova Survey. We are using the Pan-STARRS telescope to obtain photometry for up to 800 SNe Ia at z < 0.1. This strategy has several unique advantages: (1) the Pan-STARRS system is a superbly calibrated telescopic system, (2) Pan-STARRS has observed 3/4 of the sky in grizy making future template observations unnecessary, (3) we have a well-tested data-reduction pipeline, and (4) we have observed ~3000 high-redshift SNe Ia on this system. Here we present our initial sample of 225 SN Ia griz light curves, of which 180 pass all criteria for inclusion in a cosmological sample. The Foundation Supernova Survey already contains more cosmologically useful SNe Ia than all other published low-redshift SN Ia samples combined. We expect that the systematic uncertainties for the Foundation Supernova Sample will be 2-3 times smaller than other low-redshift samples. We find that our cosmologically useful sample has an intrinsic scatter of 0.111 mag, smaller than other low-redshift samples. We perform detailed simulations showing that simply replacing the current low-redshift SN Ia sample with an equally sized Foundation sample will improve the precision on the dark energy equation-of-state parameter by 35%, and the dark energy figure-of-merit by 72%.
We present an overview of our Supergiant Fast X-ray Transients (SFXT) project, that started in 2007, by highlighting the unique observational contribution Swift is giving to this exciting new field. By means of outburst detection with Swift/BAT and f ollow-up with Swift/XRT, we demonstrated that while the brightest phase of the outburst only lasts a few hours, further significant activity is observed at lower fluxes for a considerably longer (weeks) time. After intense monitoring with Swift/XRT, we now have a firm estimate of the time SFXTs spend in each phase. The 4 SFXTs we monitored for 1-2 years spend between 3 and 5 % of the time in bright outbursts. The most most probable flux level at which a random observation will find these sources, when detected, is F(2-10 keV) ~ 1-2E-11 erg cm^{-2} s^{-1} (unabsorbed), corresponding to luminosities of a few 10^{33} to a few 10^{34} erg s^{-1}. Finally, the duty-cycle of inactivity ranges between 19 and 55 %.
The nature of very faint X-ray transients (VFXTs) - transient X-ray sources that peak at luminosities $L_Xlesssim10^{36} {rm erg s^{-1}}$ - is poorly understood. The faint and often short-lived outbursts make characterising VFXTs and their multi-wave length counterparts difficult. In 2017 April we initiated the Swift Bulge Survey, a shallow X-ray survey of $sim$16 square degrees around the Galactic centre with the Neil Gehrels Swift Observatory. The survey has been designed to detect new and known VFXTs, with follow-up programmes arranged to study their multi-wavelength counterparts. Here we detail the optical and near-infrared follow-up of four sources detected in the first year of the Swift Bulge Survey. The known neutron star binary IGR J17445-2747 has a K4III donor, indicating a potential symbiotic X-ray binary nature and the first such source to show X-ray bursts. We also find one nearby M-dwarf (1SXPS J174215.0-291453) and one system without a clear near-IR counterpart (Swift J175233.9-290952). Finally, 3XMM J174417.2-293944 has a subgiant donor, an 8.7 d orbital period, and a likely white dwarf accretor; we argue that this is the first detection of a white dwarf accreting from a gravitationally focused wind. A key finding of our follow-up campaign is that binaries containing (sub)giant stars may make a substantial contribution to the VFXT population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا