ﻻ يوجد ملخص باللغة العربية
We present an overview of our Supergiant Fast X-ray Transients (SFXT) project, that started in 2007, by highlighting the unique observational contribution Swift is giving to this exciting new field. By means of outburst detection with Swift/BAT and follow-up with Swift/XRT, we demonstrated that while the brightest phase of the outburst only lasts a few hours, further significant activity is observed at lower fluxes for a considerably longer (weeks) time. After intense monitoring with Swift/XRT, we now have a firm estimate of the time SFXTs spend in each phase. The 4 SFXTs we monitored for 1-2 years spend between 3 and 5 % of the time in bright outbursts. The most most probable flux level at which a random observation will find these sources, when detected, is F(2-10 keV) ~ 1-2E-11 erg cm^{-2} s^{-1} (unabsorbed), corresponding to luminosities of a few 10^{33} to a few 10^{34} erg s^{-1}. Finally, the duty-cycle of inactivity ranges between 19 and 55 %.
We report here on the most recent results obtained on a new class of High Mass X-ray Binaries, the Supergiant Fast X-ray Transients. Since October 2007, we have been performing a monitoring campaign with Swift of four SFXTs (IGRJ17544-2916, XTEJ1739-
We present a review of the Supergiant Fast X-ray Transients (SFXT) Project, a systematic investigation of the properties of SFXTs with a strategy that combines Swift monitoring programs with outburst follow-up observations. This strategy has quickly
For the first time, Swift is giving us the opportunity to study supergiant fast X-ray transients (SFXTs) throughout all phases of their life: outbursts, intermediate level, and quiescence. We present our intense monitoring of four SFXTs, observed 2-3
Swift has allowed the possibility to give Supergiant Fast X-ray Transients (SFXTs), the new class of High Mass X-ray Binaries discovered by INTEGRAL, non serendipitous attention throughout all phases of their life. We present our results based on the
Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries (HMXBs) hosting a neutron star and an OB supergiant companion. We examine the available Swift data, as well as other new or archival/serendipitous data, on three sources: IGR J1740